iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/10.1007/978-3-319-16808-1_1?fromPaywallRec=true
Multi-view Geometry Compression | SpringerLink
Skip to main content

Multi-view Geometry Compression

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9004))

Included in the following conference series:

Abstract

For large-scale and highly redundant photo collections, eliminating statistical redundancy in multi-view geometry is of great importance to efficient 3D reconstruction. Our approach takes the full set of images with initial calibration and recovered sparse 3D points as inputs, and obtains a subset of views that preserve the final reconstruction accuracy and completeness well. We first construct an image quality graph, in which each vertex represents an input image, and the problem is then to determine a connected sub-graph guaranteeing a consistent reconstruction and maximizing the accuracy and completeness of the final reconstruction. Unlike previous works, which only address the problem of efficient structure from motion (SfM), our technique is highly applicable to the whole reconstruction pipeline, and solves the problems of efficient bundle adjustment, multi-view stereo (MVS), and subsequent variational refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heyden, A., Pollefeys, M.: Tutorial on multiple view geometry. In: Conjunction with ICPR (2000)

    Google Scholar 

  2. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building rome in a day. In: ICCV (2009)

    Google Scholar 

  3. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: CVPR (2006)

    Google Scholar 

  4. Frahm, J.-M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.-H., Dunn, E., Clipp, B., Lazebnik, S., Pollefeys, M.: Building rome on a cloudless day. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 368–381. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Wu, C.: Towards linear-time incremental structure from motion. In: 3DTV (2013)

    Google Scholar 

  6. Snavely, N., Seitz, S.M., Szeliski, R.: Skeletal sets for efficient structure from motion. In: CVPR (2008)

    Google Scholar 

  7. Li, X., Wu, C., Zach, C., Lazebnik, S., Frahm, J.-M.: Modeling and recognition of landmark image collections using iconic scene graphs. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 427–440. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Agarwal, S., Snavely, N., Seitz, S.M., Szeliski, R.: Bundle adjustment in the large. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 29–42. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Steedly, D., Essa, I., Dellaert, F.: Spectral partitioning for structure from motion. In: ICCV (2003)

    Google Scholar 

  10. Ni, K., Steedly, D., Dellaert, F.: Out-of-core bundle adjustment for large-scale 3D reconstruction. In: ICCV (2007)

    Google Scholar 

  11. Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.: Real time localization and 3D reconstruction. In: CVPR (2006)

    Google Scholar 

  12. Eudes, A., Lhuillier, M.: Error propagations for local bundle adjustment. In: CVPR (2009)

    Google Scholar 

  13. Farenzena, M., Fusiello, A., Gherardi, R.: Structure-and-motion pipeline on a hierarchical cluster tree. In: ICCV Workshop on 3D Digital Imaging and Modeling (2009)

    Google Scholar 

  14. Gherardi, R., Farenzena, M., Fusiello, A.: Improving the efficiency of hierarchical structure-and-motion. In: CVPR (2010)

    Google Scholar 

  15. Fang, T., Quan, L.: Resampling structure from motion. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 1–14. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Fitzgibbon, A.W., Zisserman, A.: Automatic camera recovery for closed or open image sequences. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 311–326. Springer, Heidelberg (1998)

    Google Scholar 

  17. Nistér, D.: Reconstruction from uncalibrated sequences with a hierarchy of trifocal tensors. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 649–663. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  18. Repko, J., Pollefeys, M.: 3D models from extended uncalibrated video sequences. In: Proceeding 3DIM (2005)

    Google Scholar 

  19. Booij, O., Zivkovic, Z., Krose, B.: Sparse appearance based modeling for robot localization. In: IROS (2006)

    Google Scholar 

  20. Zhu, S., Fang, T., Xiao, J., Quan, L.: Local readjustment for high-resolution 3D reconstruction (2014)

    Google Scholar 

  21. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  22. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. In: SIGGRAPH (2006)

    Google Scholar 

  23. Lhuillier, M., Quan, L.: A quasi-dense approach to surface reconstruction from uncalibrated images. PAMI 27, 418–433 (2005)

    Article  Google Scholar 

  24. Goesele, M., Snavely, N., Curless, B., Hoppe, H., Seitz, S.M.: Multi-view stereo for community photo collections. In: ICCV (2007)

    Google Scholar 

  25. Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Towards internet-scale multi-view stereo. In: CVPR (2010)

    Google Scholar 

  26. Agarwal, S., Mierle, K., Others: Ceres solver. https://code.google.com/p/ceres-solver/

  27. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Symposium Geometry Proceeding (2006)

    Google Scholar 

  28. Delaunoy, A., Prados, E., Gargallo, P., Pons, J.P., Sturm, P.F.: Minimizing the multi-view stereo reprojection error for triangular surface meshes. In: BMVC (2008)

    Google Scholar 

  29. Strecha, C., Hansen, W.V., Gool, L.V., Fua, P., Thoennessen, U.: On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: CVPR (2008)

    Google Scholar 

Download references

Acknowledgement

We really appreciate the support of RGC-GRF 618711, RGC/NSFC N_HKUST607/11, ITC-PSKL12EG02, and National Basic Research Program of China (2012CB316300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhu, S., Fang, T., Zhang, R., Quan, L. (2015). Multi-view Geometry Compression. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9004. Springer, Cham. https://doi.org/10.1007/978-3-319-16808-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16808-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16807-4

  • Online ISBN: 978-3-319-16808-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics