iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/10.1007/978-3-319-07173-2_20?fromPaywallRec=true
New Method for Design of Fuzzy Systems for Nonlinear Modelling Using Different Criteria of Interpretability | SpringerLink
Skip to main content

New Method for Design of Fuzzy Systems for Nonlinear Modelling Using Different Criteria of Interpretability

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8467))

Included in the following conference series:

Abstract

In this paper a new method for designing neuro-fuzzy systems for nonlinear modelling is proposed. This method contains a complex weighted fitness function with interpretability criteria and new enhanced tuning process for selecting parameters and structure of the system based on a hybrid population-based algorithm (composed of evolutionary strategy, genetic algorithm and bees algorithm). To evaluate this method, we used a well-known dynamic nonlinear modelling problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bartczuk, Ł., Dziwiński, P., Starczewski, J.T.: A new method for dealing with unbalanced linguistic term set. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS (LNAI), vol. 7267, pp. 207–212. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Bartczuk, Ł., Dziwiński, P., Starczewski, J.T.: New Method for Generation Type-2 Fuzzy Partition for FDT. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS, vol. 6113, pp. 275–280. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Bartczuk, Ł., Przybył, A., Dziwiński, P.: Hybrid state variables - fuzzy logic modelling of nonlinear objects. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 227–234. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Bartczuk, Ł., Rutkowska, D.: A New Version of the Fuzzy-ID3 Algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1060–1070. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Bartczuk, Ł., Rutkowska, D.: Medical Diagnosis with Type-2 Fuzzy Decision Trees. In: Kącki, E., Rudnicki, M., Stempczyńska, J. (eds.) Computers in Medical Activity. AISC, vol. 65, pp. 11–21. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Bilski, J., Rutkowski, L.: Numerically Robust Learning Algorithms for Feed Forward Neural Networks. In: Advances in Soft Computing - Neural Networks and Soft Computing, pp. 149–154. Physica-Verlag, A Springer-Verlag Company (2003)

    Google Scholar 

  7. Cpalka, K.: A Method for Designing Flexible Neuro-fuzzy Systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 212–219. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Cpałka, K., Rutkowski, L.: Flexible Takagi Sugeno Neuro-fuzzy Structures for Nonlinear Approximation. WSEAS Transactions on Systems 4(9), 1450–1458 (2005)

    Google Scholar 

  9. Dekker, M.: Advanced Process Identification and Control, Incorporated, ch. 1 (2002)

    Google Scholar 

  10. Dziwiński, P., Bartczuk, Ł., Starczewski, J.T.: Fully controllable ant colony system for text data clustering. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) SIDE 2012 and EC 2012. LNCS, vol. 7269, pp. 199–205. Springer, Heidelberg (2012)

    Google Scholar 

  11. Dziwiński, P., Rutkowska, D.: Algorithm for generating fuzzy rules for WWW document classification. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1111–1119. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Dziwiński, P., Rutkowska, D.: Ant focused crawling algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 1018–1028. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Dziwiński, P., Starczewski, J.T., Bartczuk, Ł.: New linguistic hedges in construction of interval type-2 FLS. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 445–450. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. El-Abd, M.: On the hybridization on the artificial bee colony and particle swarm optimization algorithms. Journal of Artificial Intelligence and Soft Computing Research 2(2), 147–155 (2012)

    MathSciNet  Google Scholar 

  15. Gabryel, M., Cpałka, K., Rutkowski, L.: Evolutionary strategies for learning of neuro-fuzzy systems. In: Proceedings of the I Workshop on Genetic Fuzzy Systems, Granada, pp. 119–123 (2005)

    Google Scholar 

  16. Gacto, M.J., Alcala, R., Herrera, F.: Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures. Information Sciences 181, 4340–4360 (2011)

    Article  Google Scholar 

  17. Ghandar, A., Michalewicz, Z.: An experimental study of Multi-Objective Evolutionary Algorithms for balancing interpretability and accuracy in fuzzy rule base classifiers for financial prediction. In: 2011 IEEE Symposium on Computational Intelligence for Financial Engineering and Economics, pp. 1–6 (2011)

    Google Scholar 

  18. Greblicki, W., Rutkowska, D., Rutkowski, L.: An orthogonal series estimate of time-varying regression. Annals of the Institute of Statistical Mathematics 35(2), 215–228 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Horzyk, A., Tadeusiewicz, R.: Self-Optimizing Neural Networks. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173, pp. 150–155. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Jelonkiewicz, J., Przybył, A.: Accuracy improvement of neural network state variable estimator in induction motor drive. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 71–77. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Kamyar, M.: Takagi-Sugeno Fuzzy Modeling for Process Control. In: Industrial Automation Robotics and Artificial Intelligence (EEE8005), School of Electrical, Electronic and Computer Engineering (2008)

    Google Scholar 

  22. Korytkowski, M., Nowicki, R., Rutkowski, L., Scherer, R.: AdaBoost Ensemble of DCOG Rough–Neuro–Fuzzy Systems. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 62–71. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Korytkowski, M., Rutkowski, L., Scherer, R.: On combining backpropagation with boosting. In: Proceedings of the IEEE International Joint Conference on Neural Network (IJCNN), vols. 1-10, pp. 1274–1277 (2006)

    Google Scholar 

  24. Korytkowski, M., Rutkowski, L., Scherer, R.: From Ensemble of Fuzzy Classifiers to Single Fuzzy Rule Base Classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Laskowski, Ł.: A novel hybrid-maximum neural network in stereo-matching process. Neural Comput. & Applic. 23, 2435–2450 (2013)

    Article  Google Scholar 

  26. Laskowski, Ł.: Objects auto-selection from stereo-images realised by self-correcting neural network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 119–125. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  27. Li, X., Er, M.J., Lim, B.S., Zhou, J.H., Gan, O.P., Rutkowski, L.: Fuzzy Regression Modeling for Tool Performance Prediction and Degradation Detection. International Journal of Neural Systems 20(5), 405–419 (2010)

    Article  Google Scholar 

  28. Lobato, F.S., Steffen Jr., V.: A new multi-objective optimization algorithm based on differential evolution and neighborhood exploring evolution strategy. Journal of Artificial Intelligence and Soft Computing Research 1(4), 259–267 (2011)

    Google Scholar 

  29. Lobato, F.S., Steffen Jr., V., Silva Neto, A.J.: Solution of singular optimal control problems using the improved differential evolution algorithm. Journal of Artificial Intelligence and Soft Computing Research 1(3), 195–206 (2011)

    Google Scholar 

  30. Łapa, K., Zalasiński, M., Cpałka, K.: A new method for designing and complexity reduction of neuro-fuzzy systems for nonlinear modelling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 329–344. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  31. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer (1999)

    Google Scholar 

  32. Nowicki, R.: On classification with missing data using rough-neuro-fuzzy systems. International Journal of Applied Mathematics and Computer Science 20(1), 55–67 (2010)

    Article  Google Scholar 

  33. Nowicki, R., Rutkowski, R.: Soft Techniques for Bayesian Classification. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing. Advances in Soft Computing, pp. 537–544. Springer Physica-Verlag (2003)

    Google Scholar 

  34. Nowicki, R., Scherer, R., Rutkowski, L.: A method for learning of hierarchical fuzzy systems. In: Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) Intelligent Technologies - Theory and Applications, pp. 124–129. IOS Press (2002)

    Google Scholar 

  35. Patan, K., Korbicz, J.: Nonlinear model predictive control of a boiler unit: A fault tolerant control study. Applied Mathematics and Computer Science 22(1), 225–237 (2012)

    MATH  Google Scholar 

  36. Pławiak, P., Tadeusiewicz, R.: Approximation of phenol concentration using novel hybrid computational intelligence methods. Applied Mathematics and Computer Science 24(1) (in print, 2014)

    Google Scholar 

  37. Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: The Bees Algorithm, A Novel Tool for Complex Optimisation Problems. In: Proceedings of the 2nd International Virtual Conference on Intelligent Production Machines and Systems, pp. 454–459 (2006)

    Google Scholar 

  38. Prampero, P.S., Attux, R.: Magnetic particle swarm optimization. Journal of Artificial Intelligence and Soft Computing Research 2(1), 59–72 (2012)

    Google Scholar 

  39. Przybył, A., Cpałka, K.: A new method to construct of interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 697–705. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  40. Przybył, A., Jelonkiewicz, J.: Genetic algorithm for observer parameters tuning in sensorless induction motor drive. In: Rutkowski, L., Kacprzyk, J. (eds.) Networks and Soft Computing (6th International Conference on Neural Networks and Soft Computing 2002), Zakopane, Poland, pp. 376–381 (2003)

    Google Scholar 

  41. Przybył, A., Smoląg, J., Kimla, P.: Distributed Control System Based on Real Time Ethernet for Computer Numerical Controlled Machine Tool (in Polish). Przeglad Elektrotechniczny 86(2), 342–346 (2010)

    Google Scholar 

  42. Rutkowski, L.: Computational Intelligence. Springer (2008)

    Google Scholar 

  43. Rutkowski, L.: An application of multiple Fourier series to identification of multivariable nonstationary systems. International Journal of Systems Science 20(10), 1993–2002 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  44. Rutkowski, L.: The real-time identification of time-varying systems by nonparametric algorithms based on the Parzen kernels. International Journal of Systems Science 16, 1123–1130 (1985)

    Article  MATH  Google Scholar 

  45. Rutkowski, L.: Flexible structures of neuro-fuzzy systems. In: Sincak, P., Vascak, J. (eds.) Quo Vadis Computational Intelligence. STUDFUZZ, vol. 54, pp. 479–484. Springer, Heidelberg (2000)

    Google Scholar 

  46. Rutkowski, L., Cpałka, K.: Flexible weighted neuro-fuzzy systems. In: Proceedings of the 9th International Conference on Neural Information Processing (ICONIP 2002), Orchid Country Club, Singapore, CD, November 18-22 (2002)

    Google Scholar 

  47. Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online Speed Profile Generation for Industrial Machine Tool Based on Neuro-fuzzy Approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 645–650. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  48. Rutkowski, L., Przybył, A., Cpałka, K.: Novel on-line speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation. IEEE Transactions on Industrial Electronics 59, 1238–1247 (2012)

    Article  Google Scholar 

  49. Scherer, R.: Neuro-fuzzy relational systems for nonlinear approximation and prediction. Nonlinear Analysis Series A: Theory, Methods and Applications 71(12), e1420–e1425 (2009)

    Article  Google Scholar 

  50. Scherer, R., Rutkowski, L.: Connectionist fuzzy relational systems. In: Halgamuge, S.K., Wang, L. (eds.) Computational Intelligence for Modelling and Prediction. SCI, vol. 2, pp. 35–47. Springer, Heidelberg (2005)

    Google Scholar 

  51. Siwek, K., Osowski, S., Szupiluk, R.: Ensemble neural network approach for accurate load forecasting in a power system. Applied Mathematics and Computer Science 19(2), 303–315 (2009)

    MATH  Google Scholar 

  52. Starczewski, J.T.: A Type-1 Approximation of Interval Type-2 FLS. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds.) WILF 2009. LNCS, vol. 5571, pp. 287–294. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  53. Starczewski, J.T., Rutkowski, L.: Connectionist Structures of Type 2 Fuzzy Inference Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  54. Starczewski, J.T., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on interval consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing. Advances in Soft Computing, pp. 570–577. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  55. Starczewski, J.T., Scherer, R., Korytkowski, M., Nowicki, R.: Modular type-2 neuro-fuzzy systems. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 570–578. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  56. Szaleniec, M., Goclon, J., Witko, M., Tadeusiewicz, R.: Application of artificial neural networks and DFT-based parameters for prediction of reaction kinetics of ethylbenzene dehydrogenase. Journal of Computer-Aided Molecular Design 20(3), 145–157 (2006)

    Article  Google Scholar 

  57. Zhou, S.M., Gan, J.Q.: Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling. Fuzzy Sets and Systems 159, 3091–3131 (2008)

    Article  MathSciNet  Google Scholar 

  58. Zalasiński, M., Łapa, K., Cpałka, K.: New Algorithm for Evolutionary Selection of the Dynamic Signature Global Features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS (LNAI), vol. 7895, pp. 113–121. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  59. Zalasiński, M., Cpałka, K.: A new method of on-line signature verification using a flexible fuzzy one-class classifier, pp. 38–53. Academic Publishing House EXIT (2011)

    Google Scholar 

  60. Zalasiński, M., Cpałka, K.: New Approach for the On-Line Signature Verification Based on Method of Horizontal Partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS (LNAI), vol. 7895, pp. 342–350. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  61. Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS (LNAI), vol. 7268, pp. 362–367. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  62. Zalasiński, M., Cpałka, K.: Novel Algorithm for the On-Line Signature Verification Using Selected Discretization Points Groups. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 493–502. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  63. Żebrowski, J., Grudziński, K.: Observations and modelling of unusual patterns in human heart rate variability. Acta Physica Polonica B 36, 1881–1894 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Łapa, K., Cpałka, K., Wang, L. (2014). New Method for Design of Fuzzy Systems for Nonlinear Modelling Using Different Criteria of Interpretability. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2014. Lecture Notes in Computer Science(), vol 8467. Springer, Cham. https://doi.org/10.1007/978-3-319-07173-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07173-2_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07172-5

  • Online ISBN: 978-3-319-07173-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics