iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/10.1007/978-3-031-75823-2_25?fromPaywallRec=true
Top-Down Construction of Locally Monotonic Graphs for Similarity Search | SpringerLink
Skip to main content

Top-Down Construction of Locally Monotonic Graphs for Similarity Search

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15268))

Included in the following conference series:

  • 61 Accesses

Abstract

Similarity search is a fundamental task in applications such as recommender systems, image retrieval, and text retrieval. Graph-based indexes for similarity search traverse a graph constructed on the dataset to retrieve the query’s neighbors, using edges to navigate to and explore the query’s local neighborhood. Edge selection techniques are crucial for the performance of graph-based indexes, enhancing accuracy and efficiency by preventing local minima, reducing graph diameter, and improving sparsity. The Half-Space Proximal (HSP) Graph is an edge-minimal monotonic graph defined by a geometric edge selection which ensures a diverse, yet sparse set of edges. Unfortunately, the quadratic construction complexity of the HSP Graph renders it impractical for large-scale search scenarios. This work investigates an approximation of the HSP Graph that aims to preserve the monotonic property locally. By leveraging a hierarchical partitioning of the dataset, this work proposes a top-down, distributed graph construction which uses a coarse-scale graph on pivots to facilitate the construction of the layer below. This paper investigates the effectiveness of this approach as a submission to the SISAP 2024 Indexing Challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    source code: https://github.com/cole-foster/sisap-2024.git

References

  1. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Comm. ACM 51(1), 117–122 (2008)

    Article  Google Scholar 

  2. Azizi, I., et al.: ELPIS: graph-based similarity search for scalable data science. VLDB 16(6), 1548–1559 (2023)

    Google Scholar 

  3. Baranchuk, D., et al.: Revisiting the inverted indices for billion-scale approximate nearest neighbors. In: ECCV, pp. 202–216 (2018)

    Google Scholar 

  4. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Comm. ACM 18(9), 509–517 (1975)

    Article  Google Scholar 

  5. Beygelzimer, A., et al.: Cover trees for nearest neighbor. In: ICML, pp. 97–104 (2006)

    Google Scholar 

  6. Borgeaud, S., et al.: Improving language models by retrieving from trillions of tokens. In: ICML, pp. 2206–2240 (2022)

    Google Scholar 

  7. Bratić, B., et al.: NN-descent on high-dimensional data. In: WIMS, pp. 1–8 (2018)

    Google Scholar 

  8. Chavez, E., et al.: Half-space proximal: a new local test for extracting a bounded dilation spanner of a unit disk graph. In: OPODIS, pp. 235–245. Springer, Berlin (2005)

    Google Scholar 

  9. Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity search in metric spaces. In: VLDB, vol. 97, pp. 426–435 (1997)

    Google Scholar 

  10. Dearholt, D.W., et al.: Monotonic search networks for computer vision databases. In: ACSSC, vol. 2, pp. 548–553. IEEE (1988)

    Google Scholar 

  11. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for generic similarity measures. In: TheWebConf, pp. 577–586 (2011)

    Google Scholar 

  12. Foster, C., Chávez, E., Kimia, B.: Finding HSP neighbors via an exact, hierarchical approach. In: SISAP, pp. 3–18. Springer, Berlin (2023)

    Google Scholar 

  13. Fu, C., Cai, D.: EFANNA: an extremely fast approximate nearest neighbor search algorithm based on kNN graph (2016). arXiv preprint arXiv:1609.07228

  14. Fu, C., et al.: Fast approximate nearest neighbor search with the navigating spreading-out graph. VLDB 12(5), 461–474 (2019)

    Google Scholar 

  15. Guo, R., et al.: Accelerating large-scale inference with anisotropic vector quantization. In: ICML, pp. 3887–3896 (2020)

    Google Scholar 

  16. Jayaram, S., et al.: DiskANN: fast accurate billion-point nearest neighbor search on a single node. NeurIPS 32 (2019)

    Google Scholar 

  17. Johnson, J., et al.: Billion-scale similarity search with GPUs. Trans. Big Data 7(3), 535–547 (2019)

    Google Scholar 

  18. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE 42(4), 824–836 (2018)

    Google Scholar 

  19. Navarro, G.: Searching in metric spaces by spatial approximation. VLDB J. 11(1), 28–46 (2002)

    Article  Google Scholar 

  20. Peng, Y., et al.: Efficient approximate nearest neighbor search in multi-dimensional databases. ACM Manag. Data 1(1), 1–27 (2023)

    Google Scholar 

  21. Ruiz, G., Chávez, E.: Proximal navigation graphs and t-spanners (2014). arXiv

    Google Scholar 

  22. Schuhmann, C., et al.: LAION-5B: an open large-scale dataset for training next generation image-text models. NeurIPS 35, 25278–25294 (2022)

    Google Scholar 

  23. Shiau, R., et al.: Shop the look: building a large scale visual shopping system at Pinterest. In: SIGKDD, pp. 3203–3212 (2020)

    Google Scholar 

  24. Shrivastava, A., Li, P.: Asymmetric LSH (ALSH) for sublinear time maximum inner product search (MIPS). NeurIPS 27 (2014)

    Google Scholar 

  25. Spotify: Annoy (2023). https://github.com/spotify/annoy

  26. Talamantes, A., Chavez, E.: Instance-based learning using the half-space proximal graph. Pattern Recogn. Lett. 156, 88–95 (2022)

    Article  Google Scholar 

  27. Tellez, E.S., Aumüller, M., Chavez, E.: Overview of the SISAP 2023 indexing challenge. In: SISAP, pp. 255–264. Springer, Berlin (2023)

    Google Scholar 

  28. Vemuri, H., et al.: Personalized retrieval over millions of items. In: SIGIR, pp. 1014–1022 (2023)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of NSF award 1910530.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cole Foster or Edgar Chávez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Foster, C., Chávez, E., Kimia, B. (2025). Top-Down Construction of Locally Monotonic Graphs for Similarity Search. In: Chávez, E., Kimia, B., Lokoč, J., Patella, M., Sedmidubsky, J. (eds) Similarity Search and Applications. SISAP 2024. Lecture Notes in Computer Science, vol 15268. Springer, Cham. https://doi.org/10.1007/978-3-031-75823-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75823-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75822-5

  • Online ISBN: 978-3-031-75823-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics