iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/10.1007/978-3-031-04881-4_42?fromPaywallRec=true
Learning Sparse Masks for Diffusion-Based Image Inpainting | SpringerLink
Skip to main content

Learning Sparse Masks for Diffusion-Based Image Inpainting

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13256))

Included in the following conference series:

Abstract

Diffusion-based inpainting is a powerful tool for the reconstruction of images from sparse data. Its quality strongly depends on the choice of known data. Optimising their spatial location – the inpainting mask – is challenging. A commonly used tool for this task are stochastic optimisation strategies. However, they are slow as they compute multiple inpainting results. We provide a remedy in terms of a learned mask generation model. By emulating the complete inpainting pipeline with two networks for mask generation and neural surrogate inpainting, we obtain a model for highly efficient adaptive mask generation. Experiments indicate that our model can achieve competitive quality with an acceleration by as much as four orders of magnitude. Our findings serve as a basis for making diffusion-based inpainting more attractive for applications such as image compression, where fast encoding is highly desirable.

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 741215, ERC Advanced Grant INCOVID).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adam, R.D., Peter, P., Weickert, J.: Denoising by inpainting. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) Scale Space and Variational Methods in Computer Vision. LNCS, vol. 10302, pp. 121–132. Springer, Cham (2017)

    Google Scholar 

  2. Alt, T., Schrader, K., Augustin, M., Peter, P., Weickert, J.: Connections between numerical algorithms for PDEs and neural networks. arXiv:2107.14742v1 [math.NA], July 2021

  3. Andris, S., Peter, P., Mohideen Kaja Mohideen, R., Weickert, J., Hoffmann, S.: Inpainting-based video compression in FullHD. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds.) SSVM 2021. LNCS, vol. 12679, pp. 425–436. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75549-2_34

    Chapter  Google Scholar 

  4. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  5. Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J.: How to choose interpolation data in images. SIAM J. Appl. Math. 70(1), 333–352 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bonettini, S., Loris, I., Porta, F., Prato, M., Rebegoldi, S.: On the convergence of a linesearch based proximal-gradient method for nonconvex optimization. Inverse Probl. 33(5), 055005 (2017)

    Google Scholar 

  7. Chen, Y., Ranftl, R., Pock, T.: A bi-level view of inpainting-based image compression. In: Kúkelová, Z., Heller, J. (eds.) Proceedings 19th Computer Vision Winter Workshop. Křtiny, Czech Republic, Feburary 2014

    Google Scholar 

  8. Chizhov, V., Weickert, J.: Efficient data optimisation for harmonic inpainting with finite elements. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds.) CAIP 2021. LNCS, vol. 13053, pp. 432–441. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89131-2_40

    Chapter  Google Scholar 

  9. Dai, Q., Chopp, H., Pouyet, E., Cossairt, O., Walton, M., Katsaggelos, A.K.: Adaptive image sampling using deep learning and its application on X-ray fluorescence image reconstruction. IEEE Trans. Multimedia 22(10), 2564–2578 (2019)

    Article  Google Scholar 

  10. Daropoulos, V., Augustin, M., Weickert, J.: Sparse inpainting with smoothed particle hydrodynamics. SIAM J. Appl. Math. 14(4), 1669–1704 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Demaret, L., Dyn, N., Iske, A.: Image compression by linear splines over adaptive triangulations. Sign. Process. 86(7), 1604–1616 (2006)

    Article  Google Scholar 

  12. Floyd, R.W., Steinberg, L.: An adaptive algorithm for spatial grey scale. Proc. Soc. Inf. Disp. 17, 75–77 (1976)

    Google Scholar 

  13. Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.P.: Image compression with anisotropic diffusion. J. Math. Imaging Vis. 31(2–3), 255–269 (2008)

    Article  MathSciNet  Google Scholar 

  14. Golts, A., Freedman, D., Elad, M.: Deep energy: task driven training of deep neural networks. IEEE J. Select. Top. Sign. Process. 15(2), 324–338 (2021)

    Article  Google Scholar 

  15. Hoeltgen, L., et al.: Optimising spatial and tonal data for PDE-based inpainting. In: Bergounioux, M., Peyré, G., Schnörr, C., Caillau, J.P., Haberkorn, T. (eds.) Variational Methods in Imaging and Geometric Control, Radon Series on Computational and Applied Mathematics, vol. 18, pp. 35–83. De Gruyter, Berlin (2017)

    Google Scholar 

  16. Hoeltgen, L., Weickert, J.: Why does non-binary mask optimisation work for diffusion-based image compression? In: Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M. (eds.) EMMCVPR 2015. LNCS, vol. 8932, pp. 85–98. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14612-6_7

    Chapter  Google Scholar 

  17. Iijima, T.: Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bull. Electrotech. Lab. 26, 368–388 (1962). in Japanese

    Google Scholar 

  18. Isogawa, K., Ida, T., Shiodera, T., Takeguchi, T.: Deep shrinkage convolutional neural network for adaptive noise reduction. IEEE Sign. Process. Lett. 25(2), 224–228 (2017)

    Article  Google Scholar 

  19. Karos, L., Bheed, P., Peter, P., Weickert, J.: Optimising data for exemplar-based inpainting. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2018. LNCS, vol. 11182, pp. 547–558. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01449-0_46

    Chapter  Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Proceedings of 3rd International Conference on Learning Representations. San Diego, CA, May 2015

    Google Scholar 

  21. Liu, H., Jiang, B., Xiao, Y., Yang, C.: Coherent semantic attention for image inpainting. In: Proceedings 2019 IEEE/CVF International Conference on Computer Vision, pp. 4170–4179. Seoul, Korea, October 2017

    Google Scholar 

  22. Mainberger, M., et al.: Optimising Spatial and Tonal Data for Homogeneous Diffusion Inpainting. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 26–37. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24785-9_3

    Chapter  Google Scholar 

  23. Marwood, D., Massimino, P., Covell, M., Baluja, S.: Representing images in 200 bytes: Compression via triangulation. In: Proceedings of 2018 IEEE International Conference on Image Processing, pp. 405–409. Athens, Greece, October 2018

    Google Scholar 

  24. Mohideen, R.M.K., Peter, P., Weickert, J.: A systematic evaluation of coding strategies for sparse binary images. Sign. Process. Image Commun. 99, 116424, November 2021

    Google Scholar 

  25. Ochs, P., Chen, Y., Brox, T., Pock, T.: iPiano: inertial proximal algorithm for nonconvex optimization. SIAM J. Imaging Sci. 7(2), 1388–1419 (2014)

    Article  MathSciNet  Google Scholar 

  26. Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544. Las Vegas, NV, June 2016

    Google Scholar 

  27. Peter, P., Hoffmann, S., Nedwed, F., Hoeltgen, L., Weickert, J.: Evaluating the true potential of diffusion-based inpainting in a compression context. Sign. Process. Image Commun. 46, 40–53 (2016)

    Article  Google Scholar 

  28. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  29. Schmaltz, C., Peter, P., Mainberger, M., Ebel, F., Weickert, J., Bruhn, A.: Understanding, optimising, and extending data compression with anisotropic diffusion. Int. J. Comput. Vis. 108(3), 222–240 (2014)

    Article  MathSciNet  Google Scholar 

  30. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454. Salt Lake City, UT, June 2018

    Google Scholar 

  31. Vašata, D., Halama, T., Friedjungová, M.: Image inpainting using Wasserstein generative adversarial imputation network. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds.) ICANN 2021. LNCS, vol. 12892, pp. 575–586. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86340-1_46

    Chapter  Google Scholar 

  32. Weickert, J., Welk, M.: Tensor field interpolation with PDEs. In: Weickert, J., Hagen, H. (eds.) Visualization and Processing of Tensor Fields, pp. 315–325. Springer, Berlin (2006)

    Google Scholar 

  33. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Proceedings of 26th International Conference on Neural Information Processing Systems. Advances in Neural Information Processing Systems, vol. 25, pp. 350–358. Lake Tahoe, NV, December 2012

    Google Scholar 

  34. Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O., Li, H.: High-resolution image inpainting using multi-scale neural patch synthesis. In: Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, pp. 6721–6729. Honolulu, HI, July 2017

    Google Scholar 

  35. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition, pp. 5505–5514. Salt Lake City, UT, June 2018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Alt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alt, T., Peter, P., Weickert, J. (2022). Learning Sparse Masks for Diffusion-Based Image Inpainting. In: Pinho, A.J., Georgieva, P., Teixeira, L.F., Sánchez, J.A. (eds) Pattern Recognition and Image Analysis. IbPRIA 2022. Lecture Notes in Computer Science, vol 13256. Springer, Cham. https://doi.org/10.1007/978-3-031-04881-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04881-4_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04880-7

  • Online ISBN: 978-3-031-04881-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics