iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/10.1007/978-3-031-02063-6_4?fromPaywallRec=true
From Dependability to Security—A Path in the Trustworthy Computing Research | SpringerLink
Skip to main content

From Dependability to Security—A Path in the Trustworthy Computing Research

  • Chapter
  • First Online:
System Dependability and Analytics

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

  • 450 Accesses

Abstract

The societal importance of trustworthy computing has become more and more obvious. It has two distinguishable yet related aspects: dependability and security. In this chapter, I will explain the commonality and difference of the two, and use my own experience as an example to show how a researcher grows his/her expertise through the dependability research and the security research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boneh D, DeMillo RA, Lipton RJ (1997) On the importance of eliminating errors in cryptographic computations. In: Proceedings of advances in cryptology: Eurocrypt’97, pp 37–51

    Google Scholar 

  2. Xu J, Chen S, Kalbarczyk Z, Iyer RK (2001) An experimental study of security vulnerabilities caused by errors. In: IEEE international conference on dependable systems and networks (DSN), Göteborg, Sweden

    Google Scholar 

  3. Chen S, Xu J, Iyer RK, Whisnant K (2002) Modeling and analyzing the security threat of firewall data corruption caused by instruction transient errors. In: IEEE international conference on dependable systems and networks (DSN), Washington DC

    Google Scholar 

  4. Govindavajhala S, Appel AW (2003) Using memory errors to attack a virtual machine. In: Proceedings of the IEEE symposium on security and privacy

    Google Scholar 

  5. Cowan C, Pu C, Maier D, Hinton H, Walpole J, Bakke P, Beattie S, Grier A, Wagle P, Zhang Q (1998) Automatic detection and prevention of buffer-overflow attacks. In: Proceedings of the 7th USENIX security symposium, San Antonio, TX

    Google Scholar 

  6. Baratloo A, Tsai T, Singh N (2000) Transparent runtime defense against stack smashing attacks. In: Proceedings of USENIX annual technical conference

    Google Scholar 

  7. Feng H, Giffin J, Huang Y, Jha S, Lee W, Miller B (2004) Formalizing sensitivity in static analysis for intrusion detection. In: Proceedings of the 2004 IEEE symposium on security and privacy

    Google Scholar 

  8. Forrest S, Hofmeyr S, Somayaji A, Longsta T (1996) A sense of self for Unix processes. In: Proceedings of the IEEE symposium on security and privacy

    Google Scholar 

  9. Feng H, Kolesnikov O, Fogla P, Lee W, Gong W (2003) Anomaly detection using call stack information. In: Proceedings of the IEEE symposium on security and privacy

    Google Scholar 

  10. Gao D, Reiter M, Song D (2004) Gray-box extraction of execution graphs for anomaly detection. In: Proceedings of the 11th ACM conference on computer and communication security

    Google Scholar 

  11. Giffin J, Jha S, Miller B (2004) Efficient context sensitive intrusion detection. In: Proceedings of the symposium on network and distributed system security

    Google Scholar 

  12. Hofmeyr SA, Forrest S, Somayaji A (1998) Intrusion detection using sequences of system calls. J Comput Secur 6(3)

    Google Scholar 

  13. Sekar R, Bendre M, Dhurjati D, Bollineni P (2001) A fast automaton-based method for detecting anomalous program behaviors. In: Proceedings of the IEEE symposium on security and privacy

    Google Scholar 

  14. Crandall JR, Chong FT (2004) Minos: control data attack prevention orthogonal to memory model. In: Proceedings of the 37th international symposium on microarchitecture

    Google Scholar 

  15. Smirnov A, Chiueh T (2005) DIRA: automatic detection, identification and repair of control-data attacks. In: Proceedings of the 12th network and distributed system security symposium (NDSS), San Diego, CA

    Google Scholar 

  16. Suh G, Lee J, Devadas S (2004) Secure program execution via dynamic information flow tracking. In: Proceedings of the 11th international conference on architectural support for programming languages and operating systems. Boston, MA

    Google Scholar 

  17. Andersen S, Abella V, Data execution prevention. Changes to functionality in Microsoft Windows XP service pack 2, part 3: memory protection technologies. http://www.microsoft.com/technet/prodtechnol/winxppro/maintain/sp2mempr.mspx

  18. Otachi E. What is data execution prevention in Windows 10. https://helpdeskgeek.com/windows-10/what-is-data-execution-prevention-in-windows-10/

  19. Chen S, Xu J, Sezer EC, Gauriar P, Iyer RK (2005) Non-control-data attacks are realistic threats. In: Proceedings of USENIX security symposium

    Google Scholar 

  20. Kim Y, Daly R, Kim J, Fallin C, Lee JH, Lee D, Wilkerson C, Lai K, Mutlu O (2014) Flipping bits in memory without accessing them: an experimental study of DRAM disturbance errors. In: Proceedings of the international symposium on computer architecture (ISCA)

    Google Scholar 

  21. Cojocar L, Razavi K, Giuffrida C, Bos H (2019) Exploiting correcting codes: on the effectiveness of ECC memory against Rowhammer attacks. In: Proceedings of the IEEE symposium on security and privacy

    Google Scholar 

  22. Cojocar L, Kim J, Patel M, Tsai L, Saroiu S, Wolman A, Mutlu O (2020) Are we susceptible to Rowhammer? An end-to-end methodology for cloud providers. In: Proceedings of the IEEE symposium on security and privacy

    Google Scholar 

  23. Rosu G, Chen F (2003) Certifying measurement unit safety policy. In: Proceedings of the IEEE international conference on automated software engineering (ASE)

    Google Scholar 

  24. Ball T, Cook B, Levin V, Rajamani SK, SLAM and static driver verifier: technology transfer of formal methods inside Microsoft. Microsoft Research Technical Report MSR-TR-2004-08

    Google Scholar 

  25. Chen S, Meseguer J, Sasse R, Wang HJ, Wang Y-M (2007) A systematic approach to uncover security flaws in GUI Logic. In: Proceedings of the IEEE symposium on security and privacy

    Google Scholar 

  26. Clavel M, Durán F, Eker S, Lincoln P, Martí-Oliet N et al (2002) Maude: specification and programming in rewriting logic. Theor Comput Sci 285(2):2002

    Google Scholar 

  27. Wang R, Zhou Y, Chen S, Qadeer S, Evans D, Gurevich Y (2013) Explicating SDKs: uncovering assumptions underlying secure authentication and authorization. In: Proceedings of the USENIX security symposium

    Google Scholar 

  28. Boogie: an intermediate verification language. http://research.microsoft.com/en-us/projects/boogie/

  29. Lamport L, Shostak R, Pease M (1982) The Byzantine generals problem. ACM transactions on programming languages and systems

    Google Scholar 

  30. Pease M, Shostak R, Lamport L (1980) Reaching agreement in the presence of faults. J ACM

    Google Scholar 

  31. Nakamoto S, Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf

  32. Xiao Y, Zhang N, Lou W, Thomas Hou Y (2020) A survey of distributed consensus protocols for Blockchain networks. In: IEEE communications surveys & tutorials, vol 22

    Google Scholar 

  33. Ongaro D, Ousterhout J (2014) In search of an understandable consensus algorithm. In: 2014 USENIX annual technical conference (USENIX ATC 14), pp 305–319

    Google Scholar 

  34. Castro M, Liskov B (1999) Practical byzantine fault tolerance. In: Proceedings of symposium on operating systems design and implementation (OSDI)

    Google Scholar 

  35. Yin M, Malkhi D, Reiter MK, Gueta GG, Abraham I, HotStuff: BFT consensus in the lens of Blockchain. [arXiv:1803.05069] https://arxiv.org/pdf/1803.05069.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, S. (2023). From Dependability to Security—A Path in the Trustworthy Computing Research. In: Wang, L., Pattabiraman, K., Di Martino, C., Athreya, A., Bagchi, S. (eds) System Dependability and Analytics. Springer Series in Reliability Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-02063-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02063-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02062-9

  • Online ISBN: 978-3-031-02063-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics