iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/10.1007/978-3-030-62008-0_3?fromPaywallRec=true
Evaluating Similarity Measures for Dataset Search | SpringerLink
Skip to main content

Evaluating Similarity Measures for Dataset Search

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2020 (WISE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12343))

Included in the following conference series:

Abstract

Dataset search engines help scientists to find research datasets for scientific experiments. Current dataset search engines are query-driven, making them limited by the appropriate specification of search queries. An alternative would be to adopt a recommendation paradigm (“if you like this dataset, you’ll also like...”). Such a recommendation service requires an appropriate similarity metric between datasets. Various similarity measures have been proposed in computational linguistics and informational retrieval. The goal of this paper is to determine which similarity measure is suitable for a dataset search engine. We will report our experiments on different similarity measures over datasets. We will evaluate these similarity measures against the gold standards which are developed for Elsevier DataSearch, a commercial dataset search engine. With the help of F-measure evaluation measure and nDCG evaluation measure, we find that Wu-Palmer Similarity, a similarity measure which is based on hierarchical terminologies, can score quite good in our benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://datasearch.elsevier.com/.

  2. 2.

    https://toolbox.google.com/datasetsearch.

  3. 3.

    https://data.mendeley.com/.

  4. 4.

    https://dumps.wikimedia.org/enwiki/.

  5. 5.

    http://www.nlm.nih.gov/mesh.

  6. 6.

    See also https://www.nlm.nih.gov/mesh/concept_structure.html.

References

  1. Bauchner, H., Golub, R., Fontanarosa, P.: Data sharing: an ethical and scientific imperative. J. Am. Med. Assoc. 12(315), 1238–1240 (2016)

    Article  Google Scholar 

  2. Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013)

    Article  Google Scholar 

  3. Borgman, C.L., Wallis, J.C., Mayernik, M.S.: Who’s got the data? Interdependencies in science and technology collaborations. Comput. Supported Coop. Work (CSCW) 21(6), 485–523 (2012). https://doi.org/10.1007/s10606-012-9169-z

    Article  Google Scholar 

  4. Chinchor, N.: MUC-4 evaluation metrics. In: Proceedings of the 4th Conference on Message Understanding, MUC4 1992, pp. 22–29. Association for Computational Linguistics, New York (1992)

    Google Scholar 

  5. Cilibrasi, R.L., Vitanyi, P.M.: The google similarity distance. IEEE Trans. Knowl. Data Eng. 19(3), 370–383 (2007)

    Article  Google Scholar 

  6. Editorial: Benefits of sharing. Nature 530(7589), 129 (2016). https://doi.org/10.1038/530129a

  7. Järvelin, K., Kekäläinen, J.: IR evaluation methods for retrieving highly relevant documents. In: Proceedings of the 23rd SIGIR Conference, SIGIR 2000, pp. 41–48. ACM, New York (2000)

    Google Scholar 

  8. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002). https://doi.org/10.1145/582415.582418

    Article  Google Scholar 

  9. McNutt, M.: Data sharing. Science 351, 1007 (2016). https://doi.org/10.1126/science.aaf4545

    Article  Google Scholar 

  10. Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50. ELRA (2010)

    Google Scholar 

  11. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. CoRR abs/cmp-lg/9511007 (1995). http://arxiv.org/abs/cmp-lg/9511007

  12. Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics, pp. 133–138. Association for Computational Linguistics (1994)

    Google Scholar 

Download references

Acknowledgements

This work has been funded by the Netherlands Science Foundation NWO grant nr. 652.001.002, it is co-funded by Elsevier B.V., with funding for the first author by the China Scholarship Council (CSC) grant number 201807730060. We are grateful to our colleagues in Elsevier for sharing their dataset, and to all of our colleagues in the Data Search project for their valuable input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Huang, Z., van Harmelen, F. (2020). Evaluating Similarity Measures for Dataset Search. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2020. WISE 2020. Lecture Notes in Computer Science(), vol 12343. Springer, Cham. https://doi.org/10.1007/978-3-030-62008-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62008-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62007-3

  • Online ISBN: 978-3-030-62008-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics