iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/10.1007/978-3-030-34980-6_14?fromPaywallRec=true
Importance Sample-Based Approximation Algorithm for Cost-Aware Targeted Viral Marketing | SpringerLink
Skip to main content

Importance Sample-Based Approximation Algorithm for Cost-Aware Targeted Viral Marketing

  • Conference paper
  • First Online:
Computational Data and Social Networks (CSoNet 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11917))

Included in the following conference series:

Abstract

Cost-aware Targeted Viral Marketing (CTVM), a generalization of Influence Maximization (IM), has received a lot of attentions recently due to its commercial values. Previous approximation algorithms for this problem required a large number of samples to ensure approximate guarantee. In this paper, we propose an efficient approximation algorithm which uses fewer samples but provides the same theoretical guarantees based on generating and using important samples in its operation. Experiments on real social networks show that our proposed method outperforms the state-of-the-art algorithm which provides the same approximation ratio in terms of the number of required samples and running time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Borgs, C., Brautbar, M., Chayes, J.T., Lucier, B.: Maximizing social influence in nearly optimal time. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pp. 946–957 (2014)

    Google Scholar 

  2. Chung, F.R.K., Lu, L.: Survey: concentration inequalities and martingale inequalities: a survey. Internet Math. 3(1), 79–127 (2006)

    Article  MathSciNet  Google Scholar 

  3. Dinh, T.N., Nguyen, D.T., Thai, M.T.: Cheap, easy, and massively effective viral marketing in social networks: truth or fiction? In: 23rd ACM Conference on Hypertext and Social Media, HT 2012, pp. 165–174 (2012)

    Google Scholar 

  4. Dinh, T.N., Shen, Y., Nguyen, D.T., Thai, M.T.: On the approximability of positive influence dominating set in social networks. J. Comb. Optim. 27(3), 487–503 (2014)

    Article  MathSciNet  Google Scholar 

  5. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM International Conference on Knowledge Discovery and Data Mining SIGKDD, pp. 137–146 (2003)

    Google Scholar 

  6. Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Inf. Process. Lett. 70(1), 39–45 (1999)

    Article  MathSciNet  Google Scholar 

  7. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. ACM TWEB 1(1), 5 (2007)

    Article  Google Scholar 

  8. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graph evolution: densification and shrinking diameters. TKDD 1(1), 2 (2007)

    Article  Google Scholar 

  9. Li, X., Smith, J.D., Dinh, T.N., Thai, M.T.: Why approximate when you can get the exact? Optimal targeted viral marketing at scale. In: 2017 IEEE Conference on Computer Communications, INFOCOM 2017, pp. 1–9 (2017)

    Google Scholar 

  10. Nguyen, H.T., Dinh, T.N., Thai, M.T.: Cost-aware targeted viral marketing in billion-scale networks. In: 35th Annual IEEE International Conference on Computer Communications, INFOCOM, pp. 1–9 (2016)

    Google Scholar 

  11. Nguyen, H.T., Dinh, T.N., Thai, M.T.: Revisiting of ‘revisiting the stop-and-stare algorithms for influence maximization’. In: 7th International Conference on Computational Data and Social Networks, CSoNet 2018, pp. 273–285 (2018)

    Google Scholar 

  12. Nguyen, H.T., Nguyen, T.P., Phan, N.H., Dinh, T.N.: Importance sketching of influence dynamics in billion-scale networks. In: 2017 IEEE International Conference on Data Mining, ICDM 2017, pp. 337–346 (2017)

    Google Scholar 

  13. Nguyen, H.T., Thai, M.T., Dinh, T.N.: Stop-and-stare: optimal sampling algorithms for viral marketing in billion-scale networks. In: Proceedings of the 2016 International Conference on Management of Data, SIGMOD, pp. 695–710 (2016)

    Google Scholar 

  14. Nguyen, H.T., Thai, M.T., Dinh, T.N.: A billion-scale approximation algorithm for maximizing benefit in viral marketing. IEEE/ACM Trans. Netw. 25(4), 2419–2429 (2017)

    Article  Google Scholar 

  15. Nguyen, N.P., Yan, G., Thai, M.T.: Analysis of misinformation containment in online social networks. Comput. Netw. 57(10), 2133–2146 (2013)

    Article  Google Scholar 

  16. Pham, C.V., Duong, H.V., Hoang, H.X., Thai, M.T.: Competitive influence maximization within time and budget constraints in online social networks: an algorithmic approach. Appl. Sci. 9(11), 2274 (2019)

    Article  Google Scholar 

  17. Pham, C.V., Duong, H.V., Thai, M.T.: Importance sample-based approximation algorithm for cost-aware targeted viral marketing. https://arxiv.org/abs/1910.04134

  18. Pham, C.V., Thai, M.T., Duong, H.V., Bui, B.Q., Hoang, H.X.: Maximizing misinformation restriction within time and budget constraints. J. Comb. Optim. 35(4), 1202–1240 (2018). https://doi.org/10.1007/s10878-018-0252-3

    Article  MathSciNet  Google Scholar 

  19. Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 351–368. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39718-2_23

    Chapter  Google Scholar 

  20. Shen, Y., Dinh, T.N., Zhang, H., Thai, M.T.: Interest-matching information propagation in multiple online social networks. In: 21st ACM International Conference on Information and Knowledge Management, CIKM 2012, pp. 1824–1828 (2012)

    Google Scholar 

  21. Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: a martingale approach. In: Proceedings of the 2015 ACM International Conference on Management of Data (SIGMOD), pp. 1539–1554 (2015)

    Google Scholar 

  22. Tang, Y., Xiao, X., Shi, Y.: Influence maximization: near-optimal time complexity meets practical efficiency. In: International Conference on Management of Data, SIGMOD 2014, pp. 75–86 (2014)

    Google Scholar 

  23. Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. In: 12th IEEE International Conference on Data Mining, ICDM 2012, Brussels, Belgium, 10–13 December 2012, pp. 745–754 (2012)

    Google Scholar 

  24. Zhang, H., Nguyen, D.T., Zhang, H., Thai, M.T.: Least cost influence maximization across multiple social networks. IEEE/ACM Trans. Netw. 24(2), 929–939 (2016)

    Article  Google Scholar 

  25. Zhang, H., Zhang, H., Kuhnle, A., Thai, M.T.: Profit maximization for multiple products in online social networks. In: 35th Annual IEEE International Conference on Computer Communications, INFOCOM 2016, San Francisco, CA, USA, 10–14 April 2016, pp. 1–9 (2016)

    Google Scholar 

  26. Zhang, H., Zhang, H., Li, X., Thai, M.T.: Limiting the spread of misinformation while effectively raising awareness in social networks. In: Thai, M.T., Nguyen, N.P., Shen, H. (eds.) CSoNet 2015. LNCS, vol. 9197, pp. 35–47. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21786-4_4

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is partially supported by NSF CNS-1443905, NSF EFRI 1441231, and NSF NSF CNS-1814614 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canh V. Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pham, C.V., Duong, H.V., Thai, M.T. (2019). Importance Sample-Based Approximation Algorithm for Cost-Aware Targeted Viral Marketing. In: Tagarelli, A., Tong, H. (eds) Computational Data and Social Networks. CSoNet 2019. Lecture Notes in Computer Science(), vol 11917. Springer, Cham. https://doi.org/10.1007/978-3-030-34980-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34980-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34979-0

  • Online ISBN: 978-3-030-34980-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics