iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://id.wikipedia.org/wiki/Kubus
Kubus - Wikipedia bahasa Indonesia, ensiklopedia bebas Lompat ke isi

Kubus

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Kubus
Kubus berbentuk heksahedron.
Jenisbangun ruang Platonik
Muka6
Rusuk12
titik sudut8
Konfigurasi titik sudutV 3.3.3.3
Simbol Wythoff3
Simbol Schläfli{4,3}
Diagram Coxeter
Grup simetriOh, B3, [4,3], (* 432)
Sudut dihedral (derajat)90°
Sifat-sifatberaturan, cembung zonohedron
Jaring
Kubus dalam 3D

Dalam geometri, kubus adalah bangun ruang tiga dimensi yang dibatasi oleh enam bidang sisi yang kongruen berbentuk bujur sangkar. Kubus memiliki 6 sisi, 12 rusuk, dan 8 titik sudut. Kubus juga disebut dengan bidang enam beraturan.[1] Selain itu, kubus juga merupakan bentuk khusus dalam prisma segi empat, dan juga termasuk salah satu dari bangun ruang Platonik.

Kubus adalah bangun ruang yang terdiri atas enam buah sisi (atau muka) bujur sangkar yang kongruen. Kubus memiliki 12 buah rusuk. Karena mukanya kongruen, kubus memiliki rusuk yang sama panjang. Selain itu, kubus memiliki delapan buah titik sudut dan memiliki diagonal ruang dengan panjang yang sama.[1]

Sebuah kubus dengan panjang rusuk memiliki luas permukaan[2]yakni enam kali luas persegi. Luas bidang diagonal beserta keseluruhannya, masing-masing dapat dirumuskan sebagai Selain itu, kubus dengan panjang rusuk yan sama memiliki volume[2]Diagonal sisi dari kubus () beserta keseluruhannya (), dan diagonal ruang dari kubus () beserta keseluruhannya (), juga masing-masing dirumuskan sebagai

Menggandakan kubus

[sunting | sunting sumber]

Menggandakan kubus (doubling the cube), atau disebut dengan masalah Delian, adalah masalah yang dicetuskan oleh matematikawan Yunani kuno. Masalah ini melibatkan konstruksi sebuah kubus dengan menggunakan jangka dan penggaris, dan konstruksi tersebut dimulai dari panjang rusuk dari kubus dan mengonstruksi panjang rusuk kubus dengan dua kali lipatnya volume dari kubus sebelumnya. Sayangnya, masalah ini masih belum terpecahkan. Hingga pada tahun 1837, Pierre Wantzel membuktikan bahwa konstruksi tersebut mustahil sebab akar pangkat tiga dari 2 bukanlah bilangan terkonstruksikan (constructible number).

Referensi

[sunting | sunting sumber]

Pranala luar

[sunting | sunting sumber]