The parameterization method for invariant manifolds I: manifolds associated to non-resonant subspaces
Visualitza/Obre
Estadístiques de LA Referencia / Recolecta
Inclou dades d'ús des de 2022
Cita com:
hdl:2117/876
Tipus de documentArticle
Data publicació2002
Condicions d'accésAccés obert
Llevat que s'hi indiqui el contrari, els
continguts d'aquesta obra estan subjectes a la llicència de Creative Commons
:
Reconeixement-NoComercial-SenseObraDerivada 2.5 Espanya
Abstract
We introduce a method to prove existence of invariant manifolds
and, at the same time to find simple polynomial maps which are
conjugated to the dynamics on them. As a first application, we consider
the dynamical system given by a Cr map F in a Banach space X close to a
fixed point: F(x) = Ax + N(x), A linear, N(0) = 0, DN(0) = 0. We show
that if X1 is an invariant subspace of A and A satisfies certain spectral
properties, then there exists a unique Cr manifold which is invariant under
F and tangent to X1.
When X1 corresponds to spectral subspaces associated to sets of the
spectrum contained in disks around the origin or their complement, we
recover the classical (strong) (un)stable manifold theorems. Our theorems,
however, apply to other invariant spaces. Indeed, we do not require X1 to
be an spectral subspace or even to have a complement invariant under A.
Fitxers | Descripció | Mida | Format | Visualitza |
---|---|---|---|---|
0202cabre.pdf | 457,2Kb | Visualitza/Obre |