iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://gl.wikipedia.org/wiki/Autocorrelación
Autocorrelación - Wikipedia, a enciclopedia libre Saltar ao contido

Autocorrelación

Na Galipedia, a Wikipedia en galego.

A autocorrelación é unha operación matemática consistente na correlación dunha función con ela mesma. Existen varias definicións dependendo do campo de estudo que se considere, tipicamente o procesamento de sinais por unha banda e a estatística por outra.

Definicións

[editar | editar a fonte]

Imos ver a continuación as dúas definicións que se adoitan atopar, a da estatística, para variabeis discretas e as empregadas en procesamento de sinais para variabeis continuas e discretas.

Estatística

[editar | editar a fonte]

Por unha banda en estatística, a autocorrelación é unha medida que informa de canto o valor dunha realización dunha variábel aleatoria é capaz de influenciar os seus veciños. Por exemplo, o canto a existencia de valor máis alto condiciona valores tamén altos dos seus veciños.

Supóndose unha variábel aleatoria Xt discreta estacionaria, dependente do tempo, con media μ, a súa autocorelación ven definida como:

onde E[ ] é o valor medio, ou valor agardado da expresión, é o movemento no tempo e é a variancia da variábel .

Segundo a definición da estatística, o valor da autocorrelación está entre 1 (correlación perfeita) e -1, o que significa anti-correlación perfeita. O valor 0 significa total ausencia de correlación.

Procesamento de sinais

[editar | editar a fonte]

En procesamento de sinais a autocorrelación continua dun sinal f(t), Rf(τ), defínese como a correlación continua de f(t) con ela mesma mais desprazada por un valor τ

onde f* represente a complexa conxugada e o cículo representa a convolución. Para unha función real, f* = f.

A autocorrelación discreta R a un valor de desprazamento j para o sinal xn é

onde m é o valor medio (valor agardado) de xn. Para sinais centrados no cero (de valor medio nulo) a definición fica en:

A autocorrelación multidimensional defínese de xeito semellante. Así, a autocorrelación en tres dimensións, defínese:

Propiedades

[editar | editar a fonte]

A autocorrelación dunha dada variábel defínese pola distancia, ou atraso con que se desexa medila. Cando esa distancia é cero, tense o valor máximo 1, pois trátase da variábel correlacionada con ela mesma. Outros valores deben calcularse caso a caso.

Caso se retire da fórmula enriba a variancia tense a chamada autocovariancia, que descreve o canto a variábel varía en conxunto coa súa instancia con atraso .

Aplicacións

[editar | editar a fonte]

O concepto de autocorrelación ten aplicación a moitas áreas, que van da análise dos sinais á óptica, pasando pola economía e pola xeofísica.

Un chamativo exemplo é o autocorrelador, un instrumento óptico de precisión capaz de caracterizar pulsos ópticos de femtosegundos.

Véxase tamén

[editar | editar a fonte]

Compárese co termo autocorrelador da física óptica