Mitogenome Phylogeny Including Data from Additional Subspecies Provides New Insights into the Historical Biogeography of the Eurasian lynx Lynx lynx
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. DNA Extraction, Library Preparation, and Targeted Capture
2.3. Bioinformatic Analysis
2.4. Phylogenetic Analysis
3. Results
3.1. General mtDNA Phylogeny
3.2. History of mtDNA Clades and Lineages
4. Discussion
4.1. Mitogenome Phylogeny
- Scenario 1: The Balkan lynx is a true subspecies, but the three Balkan lynx included in our analysis (from [18]) were descendants of a former hybridization event between L. l. balcanicus (male) and L. l. dinniki (female) and thus introgressed with L. l. dinniki lineage B2 mtDNA. Such introgressions occurred in other species, particularly if conspecific partners were scarce [62,63,64].
- Scenario 2: The entire lineage B2 is actually an L. l. balcanicus lineage that emerged ~48 kya from an MRCA with L. l. dinniki and had split into two sublineages ~20 kya, whereby ancestors of the two L. l. dinniki individuals from lineage B2 (ÇK1 and ÇK2; Figure 2) became introgressed with mtDNA from one of the two L. l. balcanicus sublineages. It needs to be noted that these two subspecies live on either side of the Bosporus junction between Asia (i.e., L. l. dinniki) and Europe (i.e., L. l. balcanicus), a junction that, during the evolution of these lineages, could have been traversed by either subspecies across the land masses connecting Asia and Europe via the Dardanelles and the Bosporus [65,66].
- Even though the three scenarios differ in their parsimony, with scenario 3 being the most parsimonious, all three are feasible in principle and consistent with the data.
4.2. Implications for European Populations of Lynx lynx
4.3. Anatolia as a Hotspot of Diversity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newbold, T.; Hudson, L.N.; Arnell, A.P.; Contu, S.; De Palma, A.; Ferrier, S.; Hill, S.L.L.; Hoskins, A.J.; Lysenko, I.; Phillips, H.R.P.; et al. Has Land Use Pushed Terrestrial Biodiversity beyond the Planetary Boundary? A Global Assessment. Science 2016, 353, 288–291. [Google Scholar] [CrossRef]
- Reading, R.; Michel, S.; Amgalanbaatar, S. Ovis ammon. The IUCN Red List of Threatened Species 2020: e.T15733A22146397. Available online: https://dx.doi.org/10.2305/IUCN.UK.2020-2.RLTS.T15733A22146397.en (accessed on 21 June 2021).
- McLellan, B.N.; Proctor, M.F.; Huber, D.; Michel, S. Ursus Arctos (Amended Version of 2017 Assessment). The IUCN Red List of Threatened Species 2017: e.T41688A121229971. Available online: https://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T41688A121229971.en (accessed on 21 June 2021).
- Avgan, B.; Henschel, P.; Ghoddousi, A. Caracal caracal. The IUCN Red List of Threatened Species 2016: e.T3847A50650230. Available online: https://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T3847A50650230.en (accessed on 31 May 2021).
- Breitenmoser, U.; Breitenmoser-Würsten, C.; Lanz, T.; von Arx, M.; Antonevich, A.; Bao, W.; Avgan, B. Lynx lynx (Errata Version Published in 2017). The IUCN Red List of Threatened Species 2015: e.T12519A121707666. Available online: https://www.iucnredlist.org/species/12519/121707666 (accessed on 31 May 2021).
- Frankham, R.; Ballou, J.D.; Briscoe, D.A. Introduction to Conservation Genetics; Cambridge University Press: Cambridge, UK, 2002; p. 480. [Google Scholar]
- Hewitt, G.M. Speciation, Hybrid Zones and Phylogeography-Or Seeing Genes in Space and Time. Mol. Ecol. 2001, 10, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Wilting, A.; Courtiol, A.; Christiansen, P.; Niedballa, J.; Scharf, A.K.; Orlando, L.; Balkenhol, N.; Hofer, H.; Kramer-Schadt, S.; Fickel, J.; et al. Planning Tiger Recovery: Understanding Intraspecific Variation for Effective Conservation. Sci. Adv. 2015, 1, e1400175. [Google Scholar] [CrossRef] [Green Version]
- Werhahn, G.; Liu, Y.; Meng, Y.; Cheng, C.; Lu, Z.; Atzeni, L.; Deng, Z.; Kun, S.; Shao, X.; Lu, Q.; et al. Himalayan Wolf Distribution and Admixture Based on Multiple Genetic Markers. J. Biogeogr. 2020, 47, 1272–1285. [Google Scholar] [CrossRef] [Green Version]
- Lan, T.; Gill, S.; Bellemain, E.; Bischof, R.; Nawaz, M.A.; Lindqvist, C. Evolutionary History of Enigmatic Bears in the Tibetan Plateau–Himalaya Region and the Identity of the Yeti. Proc. R. Soc. B Biol. Sci. 2017, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilting, A.; Buckley-Beason, V.A.; Feldhaar, H.; Gadau, J.; O’Brien, S.J.; Linsenmair, K.E. Clouded Leopard Phylogeny Revisited: Support for Species Recognition and Population Division between Borneo and Sumatra. Front. Zool. 2007, 4, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilting, A.; Christiansen, P.; Kitchener, A.C.; Kemp, Y.J.M.; Ambu, L.; Fickel, J. Geographical Variation in and Evolutionary History of the Sunda Clouded Leopard (Neofelis diardi) (Mammalia: Carnivora: Felidae) with the Description of a New Subspecies from Borneo. Mol. Phylogenetics Evol. 2011, 58, 317–328. [Google Scholar] [CrossRef]
- Patel, R.P.; Wutke, S.; Lenz, D.; Mukherjee, S.; Ramakrishnan, U.; Veron, G.; Fickel, J.; Wilting, A.; Förster, D.W. Genetic Structure and Phylogeography of the Leopard Cat (Prionailurus bengalensis) Inferred from Mitochondrial Genomes. J. Hered. 2017, 108, 349–360. [Google Scholar] [CrossRef] [Green Version]
- Martins, R.F.; Schmidt, A.; Lenz, D.; Wilting, A.; Fickel, J. Human-Mediated Introduction of Introgressed Deer across Wallace’s Line: Historical Biogeography of Rusa unicolor and R. timorensis. Ecol. Evol. 2017, 8, 1465–1479. [Google Scholar] [CrossRef] [Green Version]
- Çilingir, F.G.; Akin Pekşen, Ç.; Ambarli, H.; Beerli, P.; Bilgin, C.C. Exceptional Maternal Lineage Diversity in Brown Bears (Ursus arctos) from Turkey. Zool. J. Linn. Soc. 2016, 176, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Rueness, E.K.; Naidenko, S.; Trosvik, P.; Stenseth, N.C. Large-scale genetic structuring of a widely distributed carnivore-the Eurasian lynx (Lynx lynx). PLoS ONE 2014, 9, e93675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitchener, A.C.; Breitenmoser-Würsten, C.; Eizirik, E.; Gentry, A.; Werdelin, L.; Wilting, A.; Yamaguchi, N. A Revised Taxonomy of the Felidae. The Final Report of the Cat Classification Task Force of the IUCN/ SSC Cat Specialist Group. Cat News Spec. Issue 2017, 11, 80. [Google Scholar]
- Lucena-Perez, M.; Marmesat, E.; Kleinman-Ruiz, D.; Martínez-Cruz, B.; Węcek, K.; Saveljev, A.P.; Seryodkin, I.V.; Okhlopkov, I.; Dvornikov, M.G.; Ozolins, J.; et al. Genomic Patterns in the Widespread Eurasian Lynx Shaped by Late Quaternary Climatic Fluctuations and Anthropogenic Impacts. Mol. Ecol. 2020, 29, 812–828. [Google Scholar] [CrossRef] [Green Version]
- Breitenmoser, U.; Breitenmoser-Würsten, C.; Okarma, H.; Kaphegyi, T.; Kaphygyi, U.; Müller, U.M.; Bern, C.; Kaphegyi-wallmann, U. Action Plan for the Conservation of the Eurasian Lynx in Europe; Council and Europe Publishing: Strasbourg, France, 2000; Volume 112. [Google Scholar]
- Gugolz, D.; Bernasconi, M.V.; Breitenmoser-Würsten, C.; Wandeler, P. Historical DNA Reveals the Phylogenetic Position of the Extinct Alpine Lynx. J. Zool. 2008, 275, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, K.; Kowalczyk, R.; Ozolins, J.; Männil, P.; Fickel, J. Genetic Structure of the Eurasian Lynx Population in North-Eastern Poland and the Baltic States. Conserv. Genet. 2009, 10, 497–501. [Google Scholar] [CrossRef]
- Ratkiewicz, M.; Matosiuk, M.; Kowalczyk, R.; Konopiński, M.K.; Okarma, H.; Ozolins, J.; Männil, P.; Ornicans, A.; Schmidt, K. High Levels of Population Differentiation in Eurasian Lynx at the Edge of the Species’ Western Range in Europe Revealed by Mitochondrial DNA Analyses. Anim. Conserv. 2012, 15, 603–612. [Google Scholar] [CrossRef]
- Ratkiewicz, M.; Matosiuk, M.; Saveljev, A.P.; Sidorovich, V.; Ozolins, J.; Männil, P.; Balciauskas, L.; Kojola, I.; Okarma, H.; Kowalczyk, R.; et al. Long-Range Gene Flow and the Effects of Climatic and Ecological Factors on Genetic Structuring in a Large, Solitary Carnivore: The Eurasian Lynx. PLoS ONE 2014, 9, e115160. [Google Scholar] [CrossRef] [Green Version]
- Bull, J.K.; Heurich, M.; Saveljev, A.P.; Schmidt, K.; Fickel, J.; Förster, D.W. The Effect of Reintroductions on the Genetic Variability in Eurasian Lynx Populations: The Cases of Bohemian–Bavarian and Vosges–Palatinian Populations. Conserv. Genet. 2016, 17, 1229–1234. [Google Scholar] [CrossRef] [Green Version]
- Förster, D.W.; Bull, J.K.; Lenz, D.; Autenrieth, M.; Paijmans, J.L.A.; Kraus, R.H.S.; Nowak, C.; Bayerl, H.; Kuehn, R.; Saveljev, A.P.; et al. Targeted Resequencing of Coding DNA Sequences for SNP Discovery in Nonmodel Species. Mol. Ecol. Resour. 2018, 18, 1356–1373. [Google Scholar] [CrossRef]
- Holmala, K.; Herrero, A.; Kopatz, A.; Schregel, J.; Eiken, H.G.; Hagen, S.B. Genetic Evidence of Female Kin Clusters in a Continuous Population of a Solitary Carnivore, the Eurasian lynx. Ecol. Evol. 2018, 8, 10964–10975. [Google Scholar] [CrossRef] [PubMed]
- Krojerová-Prokešová, J.; Turbaková, B.; Jelenčič, M.; Bojda, M.; Kutal, M.; Skrbinšek, T.; Koubek, P.; Bryja, J. Genetic Constraints of Population Expansion of the Carpathian Lynx at the Western Edge of Its Native Distribution Range in Central Europe. Heredity (Edinburgh) 2019, 122, 785–799. [Google Scholar] [CrossRef]
- Mueller, S.A.; Reiners, T.E.; Middelhoff, T.L.; Anders, O.; Kasperkiewicz, A.; Nowak, C. The Rise of a Large Carnivore Population in Central Europe: Genetic Evaluation of Lynx Reintroduction in the Harz Mountains. Conserv. Genet. 2020, 21, 577–587. [Google Scholar] [CrossRef] [Green Version]
- Herrero, A.; Klütsch, C.F.C.; Holmala, K.; Maduna, S.N.; Kopatz, A.; Eiken, H.G.; Hagen, S.B. Genetic Analysis Indicates Spatial-Dependent Patterns of Sex-Biased Dispersal in Eurasian lynx in Finland. PLoS ONE 2021, 16, e246833. [Google Scholar] [CrossRef]
- Fickel, J.; Hauffe, H.C.; Pecchioli, E.; Soriguer, R.; Vapa, L.; Pitra, C. Cladogenesis of the European Brown Hare (Lepus europaeus Pallas, 1778). Eur. J. Wildl. Res. 2008, 54, 495–510. [Google Scholar] [CrossRef] [Green Version]
- Sommer, R.S.; Nadachowski, A. Glacial Refugia of Mammals in Europe: Evidence from Fossil Records. Mamm. Rev. 2006, 36, 251–265. [Google Scholar] [CrossRef]
- Cooper, S.J.B.; Hewitt, G.M. Nuclear DNA Sequence Divergence between Parapatric Subspecies of the Grasshopper Chorthippus parallelus. Insect Mol. Biol. 1993, 2, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Bilgin, R. Back to the Suture: The Distribution of Intraspecific Genetic Diversity in and around Anatolia. Int. J. Mol. Sci. 2011, 12, 4080–4103. [Google Scholar] [CrossRef] [Green Version]
- Arslan, Y.; Demirtaş, S.; Herman, J.S.; Pustilnik, J.D.; Searle, J.B.; Gündüz, I. The Anatolian Glacial Refugium and Human-Mediated Colonization: A Phylogeographical Study of the Stone Marten (Martes foina) in Turkey. Biol. J. Linn. Soc. 2020, 129, 470–491. [Google Scholar] [CrossRef]
- Cömert, N.; Carlı, O.; Dinçtürk, H.B. The Missing Lynx of Eurasia at Its Southern Edge: A Connection to the Critically Endangered Balkan lynx. Mitochondrial DNA Part A DNA Mapp. Seq. Anal. 2018, 29, 1269–1275. [Google Scholar] [CrossRef] [PubMed]
- İbiş, O.; Özcan, S.; Kırmanoğlu, C.; Keten, A.; Tez, C. Genetic Analysis of Turkish Lynx (Lynx lynx) Based on Mitochondrial DNA Sequences. Russ. J. Genet. 2019, 55, 1426–1437. [Google Scholar] [CrossRef]
- Mengüllüoğlu, D.; Fickel, J.; Hofer, H.; Förster, D.W. Non-Invasive Faecal Sampling Reveals Spatial Organization and Improves Measures of Genetic Diversity for the Conservation Assessment of Territorial Species: Caucasian lynx as a Case Species. PLoS ONE 2019, 14, e216549. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, H.; Li, D.; Xie, M.; Wu, J.; Wen, A.; Wang, Q.; Zhu, G.; Ni, Q.; Zhang, M.; et al. Complete Mitochondrial Genome and Phylogenetic Analysis of a Chinese Eurasian Lynx (Lynx Lynx). Mitochondrial DNA Part B Resour. 2018, 3, 1174–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mengüllüoğlu, D.; Ambarlı, H.; Berger, A.; Hofer, H. Foraging Ecology of Eurasian lynx Populations in Southwest Asia: Conservation Implications for a Diet Specialist. Ecol. Evol. 2018, 8, 9451–9463. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, L.S.; Peskov, V.N. Morphological variability and intraspecies systematics of European lynx, Lynx lynx. Zbirnyk Prac. Zool. Muzeju 2007, 39, 81–99. (In Russian) [Google Scholar]
- Mengüllüoğlu, D.; Edwards, S.; Hofer, H.; Berger, A. Female and male Eurasian lynx have distinct spatial tactics at different life-history stages in a high-density population. Ecol. Evol. 2021, 11, 10342–10445. [Google Scholar] [CrossRef]
- Weidong, B. Eurasian lynx in China–present status and conservation challenges. Cat News Spec. Issue 2010, 5, 22–25. [Google Scholar]
- Ryabinina, M.A.; Esipov, A.V. “K Pitaniyu Turkestanskoy Rysi” [On the Diet of the Turkestan lynx]. In Ekologiya Rasteniy i Zhivotnykh Zapovednikov Uzbekistana; Ecology of Plants and Animals in the Reserves of Uzbekistan; Academy of Sciences of UzSSR: Tashkent, Uzbekistan, 1983; pp. 91–93. [Google Scholar]
- Loukarevskiy, V.S. Information on the fauna and recent status of some populations are large mammals in the Kugitang Range (Eastern Turkmenistan). Lutreola 1996, 7, 19–21. [Google Scholar]
- Lever, C. Handbook of the Mammals of the World: Vol. 1: Carnivores. Zool. J. Linn. Soc. 2010, 160, 827–828. [Google Scholar] [CrossRef] [Green Version]
- Kaczensky, P.; Rustamov, E.; Karryeva, S.; Iankov, P.; Hudaykuliev, N.; Saparmyadov, J.; Veyisov, A.; Shestopal, A.A.; Mengliev, S.; Hojamyradov, H.; et al. 2019 Rapid Assessments of Wildlife in Turkmenistan 2018; NINA Report 1696; Norwegian Institute for Nature Research: Trondheim, Norway, 2019. [Google Scholar]
- Ning, Y.; Liu, H.; Jiang, G.; Ma, J. Phylogenetic Relationship of Eurasian Lynx (Lynx lynx) Revealed by Complete Mitochondrial Genome. Mitochondrial DNA 2016, 27, 3477–3478. [Google Scholar] [CrossRef]
- Fortes, G.G.; Paijmans, J.L.A. Analysis of Whole Mitogenomes from Ancient Samples. In Whole Genome Amplification: Methods and Protocols; Springer: New York, NY, USA, 2015; pp. 179–195. [Google Scholar] [CrossRef] [Green Version]
- Maricic, T.; Whitten, M.; Pääbo, S. Multiplexed DNA Sequence Capture of Mitochondrial Genomes Using PCR Products. PLoS ONE 2010, 5, e14004. [Google Scholar] [CrossRef]
- Paijmans, J.L.A.; Fickel, J.; Courtiol, A.; Hofreiter, M.; Förster, D.W. Impact of Enrichment Conditions on Cross-Species Capture of Fresh and Degraded DNA. Mol. Ecol. Resour. 2016, 16, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Magoč, T.; Salzberg, S.L. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An Integrated and Extendable Desktop Software Platform for the Organization and Analysis of Sequence Data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Drummond, A.J.; Suchard, M. Tracer v1.6: MCMC Trace Analysis Package; Institute of Evolutionary Biology, Department of Computer Science: Edinburgh, UK, 2013. [Google Scholar]
- Bouckaert, R.; Heled, J.; Kühnert, D.; Vaughan, T.; Wu, C.H.; Xie, D.; Suchard, M.A.; Rambaut, A.; Drummond, A.J. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 2014, 10, e1003537. [Google Scholar] [CrossRef] [Green Version]
- Leigh, J.W.; Bryant, D. POPART: Full-Feature Software for Haplotype Network Construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Werdelin, L. The Evolution of Lynxes. Ann. Zool. Fenn. 1981, 18, 37–71. [Google Scholar]
- Alves, P.C.; Melo-Ferreira, J.; Freitas, H.; Boursot, P. The Ubiquitous Mountain Hare Mitochondria: Multiple Introgressive Hybridization in Hares, Genus Lepus. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 2831–2839. [Google Scholar] [CrossRef] [Green Version]
- Goodman, S.J.; Barton, N.H.; Swanson, G.; Abernethy, K.; Pemberton, J.M. Introgression through Rare Hybridization: A Genetic Study of a Hybrid Zone between Red and Sika Deer (Genus Cervus) in Argyll, Scotland. Genetics 1999, 152, 355–371. [Google Scholar] [CrossRef] [PubMed]
- Tate, M.L.; Mathias, H.C.; Fennessy, P.F.; Dodds, K.G.; Penty, J.M.; Hill, D.F. A New Gene Mapping Resource: Interspecies Hybrids between Pere David’s Deer (Elaphurus davidianus) and Red Deer (Cervus elaphus). Genetics 1995, 139, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Lericolais, G.; Popescu, I.; Guichard, F.; Popescu, S.M.; Manolakakis, L. Water-Level Fluctuations in the Black Sea since the Last Glacial Maximum. In The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement; Springer Science and Business Media: New York, NY, USA, 2007; pp. 437–452. [Google Scholar] [CrossRef]
- Okay, S.; Jupinet, B.; Lericolais, G.; Çifçi, G.; Morigi, C. Morphological and Stratigraphic Investigation of a Holocene Subaqueous Shelf Fan, North of the İstanbul Strait in the Black Sea. Turk. J. Earth Sci. 2011, 20, 258–305. [Google Scholar] [CrossRef]
- Meeting Report of the Large Carnivore’s Session at the Forum Carpaticum 2018, Eger, Hungary. Available online: http://www.carpathianconvention.org/eventdetailothers/events/forum-carpaticum-2018-large-carnivores-session.html (accessed on 30 July 2021).
- Senn, H.V.; Ghazali, M.; Kaden, J.; Barclay, D.; Harrower, B.; Campbell, R.D.; Macdonald, D.W.; Kitchener, A.C. Distinguishing the victim from the threat: SNP-based methods reveal the extent of introgressive hybridization between wildcats and domestic cats in Scotland and inform future in situ and ex situ management options for species restoration. Evol. Appl. 2019, 12, 399–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatis, C.; Suchentrunk, F.; Moutou, K.A.; Giacometti, M.; Haerer, G.; Djan, M.; Vapa, L.; Vukovic, M.; Tvrtković, N.; Sert, H.; et al. Phylogeography of the Brown Hare (Lepus europaeus) in Europe: A Legacy of South-Eastern Mediterranean Refugia? J. Biogeogr. 2009, 36, 515–528. [Google Scholar] [CrossRef]
- Ashrafzadeh, M.R.; Djan, M.; Szendrei, L.; Paulauskas, A.; Scandura, M.; Bagi, Z.; Ilie, D.E.; Kerdikoshvili, N.; Marek, P.; Soos, N.; et al. Large-Scale Mitochondrial DNA Analysis Reveals New Light on the Phylogeography of Central and Eastern-European Brown Hare (Lepus europaeus Pallas, 1778). PLoS ONE 2018, 13, e204653. [Google Scholar] [CrossRef] [Green Version]
- Şekercioĝlu, Ç.H.; Anderson, S.; Akçay, E.; Bilgin, R.; Can, Ö.E.; Semiz, G.; Tavşanoĝlu, Ç.; Yokeş, M.B.; Soyumert, A.; Ipekdal, K.; et al. Turkey’s Globally Important Biodiversity in Crisis. Biol. Conserv. 2011, 144, 2752–2769. [Google Scholar] [CrossRef]
- İbiş, O.; Aksöyek, E.; Özcan, S.; Keten, A.; Yorulmaz, T.; Tez, C. Genetic Analysis of the Turkish Gray Wolf (Canis lupus) Based on Partial Mitochondrial DNA Sequences. Vertebr. Zool. 2016, 66, 427–435. [Google Scholar]
- Telcioğlu, M.; İbiş, O.; Aksöyek, E.; Özcan, S.; Moradi, M.; Gürkan, Ö.F.; Tez, C. Genetic Analysis of Iranian and Turkish Red Foxes (Vulpes vulpes) Based on Mitochondrial DNA (D-Loop) Sequences. Ethol. Ecol. Evol. 2019, 31, 568–582. [Google Scholar] [CrossRef]
- İbiş, O.; Tez, C. Phylogenetic Status and Genetic Diversity of the Turkish Marbled Polecat Vormela peregusna, (Mustelidae: Carnivora: Mammalia), Inferred from the Mitochondrial Cytochrome b Gene. Vertebr. Zool. 2014, 64, 285–294. [Google Scholar]
- Gündüz, I.; Jaarola, M.; Tez, C.; Yeniyurt, C.; Polly, P.D.; Searle, J.B. Multigenic and Morphometric Differentiation of Ground Squirrels (Spermophilus, Scuiridae, Rodentia) in Turkey, with a Description of a New Species. Mol. Phylogenetics Evol. 2007, 43, 916–935. [Google Scholar] [CrossRef]
- Gündüz, I.; Rambau, R.V.; Tez, C.; Searle, J.B. Mitochondrial DNA Variation in the Western House Mouse (Mus musculus domesticus) Close to Its Site of Origin: Studies in Turkey. Biol. J. Linn. Soc. 2005, 84, 473–485. [Google Scholar] [CrossRef]
- Kankiliç, T.; Özüt, D.; Gürler, Ş.; Kence, M.; Bozkaya, F.; Kence, A. Rediscovery of a New Mountain Gazelle Population and Clarification of Taxonomic Status of the Genus Gazella in Turkey Using MtDNA Sequencing. Folia Zool. 2012, 61, 129–137. [Google Scholar] [CrossRef]
- Karataş, A.; Bulut, Ş.; Akbaba, B. Camera Trap Records Confirm the Survival of the Leopard (Panthera pardus L.; 1758) in Eastern Turkey (Mammalia: Felidae). Zool. Middle East 2021. [Google Scholar] [CrossRef]
- Sedalischev, V.T.; Odnokurtsev, V.A.; Ohlopkov, I.M. The materials on ecology of the lynx (Lynx lynx, 1758) in Yakutia. News Samara Sci. Cent. Russ. Acad. Sci. 2014, 16, 175–182. (In Russian) [Google Scholar]
- Hailer, F.; Kutschera, V.E.; Hallström, B.M.; Klassert, D.; Fain, S.R.; Leonard, J.A.; Arnason, U.; Janke, A. Nuclear Genomic Sequences Reveal That Polar Bears Are an Old and Distinct Bear Lineage. Science 2012, 336, 344–347. [Google Scholar] [CrossRef] [Green Version]
Sampling Location | Area Protection Status | Fecal Swabs | Hair |
---|---|---|---|
Çığlıkara Forest Reserve (ÇK) | Research Forest | 2 | - |
Gidengelmez Mountains (GG) | Wildlife Development Reserve | 3 | 1 (zoo) |
Nallıhan Mountains (NH) | Unprotected | 3 | - |
Yusufeli-Kaçkar Mountains (YE) | Wildlife Development Reserve | 2 | 1 |
Sample ID | Sample Type | Raw Reads | Joined Read Pairs after Quality Trimming | Duplication Percentage | Deduplicated Sequences | Percent Mitogenome Coverage at ≥5× Excl. Repetitive Region |
---|---|---|---|---|---|---|
NH | Fecal swab | 4,212,534 | 1,613,945 | 94.02% | 28,279 | 100 |
ÇK1 | Fecal swab | 1,682,350 | 557,712 | 84.29% | 15,366 | 98.78 |
ÇK2 | Fecal swab | 1,797,014 | 569,045 | 78.95% | 13,174 | 97.62 |
GG1 | Fecal swab | 11,647,032 | 4,271,917 | 98.20% | 31,521 | 100 |
GG2 | Hair (zoo) | 1,215,728 | 349,044 | 86.96% | 6727 | 91.53 |
YE | Fecal swab | 3,518,972 | 1,101,722 | 96.16% | 10,080 | 98.81 |
Therminology Used in This Study | Subspecies Included: Lynx lynx | Origin | Corresponds to Haplogroup (HG) b | Subspecies Included: Lynx lynx |
---|---|---|---|---|
Clade A | isabellinus | Southern China | - | - |
Clade B | dinniki, balcanicus | HG 1 | balcanicus | |
lineage B1 | dinniki | Turkey (SW, NW, and NE Anatolia) | - | - |
lineage B2 | dinniki, balcanicus | Turkey (SW Anatolia), Montenegro, Serbia | HG 1 | balcanicus |
Clade C | lynx, carpathicus, wrangeli | HG 2–5 | lynx, carpathicus, wrangeli, isabellinusc | |
lineage C1 | lynx, | NE Poland, Latvia, Russia (Kirov, Ural) | HG 2 | lynx, carpathicus |
carpathicus | S Poland, Slovakia, Romania | |||
lineage C2 | lynx, wrangelic | Norway, Russia (Kirov, Ural, Yakutia) | HG 3 | lynx, wrangelic |
lineage C3 | wrangeli | Russia (Primorsky Krai, Yakutia, Tuva) | HG 4, 5 | wrangeli, isabellinusd |
Isabellinusd | Mongolia (Ömgönovi) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mengüllüoğlu, D.; Ambarlı, H.; Barlow, A.; Paijmans, J.L.A.; Sayar, A.O.; Emir, H.; Kandemir, İ.; Hofer, H.; Fickel, J.; Förster, D.W. Mitogenome Phylogeny Including Data from Additional Subspecies Provides New Insights into the Historical Biogeography of the Eurasian lynx Lynx lynx. Genes 2021, 12, 1216. https://doi.org/10.3390/genes12081216
Mengüllüoğlu D, Ambarlı H, Barlow A, Paijmans JLA, Sayar AO, Emir H, Kandemir İ, Hofer H, Fickel J, Förster DW. Mitogenome Phylogeny Including Data from Additional Subspecies Provides New Insights into the Historical Biogeography of the Eurasian lynx Lynx lynx. Genes. 2021; 12(8):1216. https://doi.org/10.3390/genes12081216
Chicago/Turabian StyleMengüllüoğlu, Deniz, Hüseyin Ambarlı, Axel Barlow, Johanna L. A. Paijmans, Ali Onur Sayar, Hasan Emir, İrfan Kandemir, Heribert Hofer, Jörns Fickel, and Daniel W. Förster. 2021. "Mitogenome Phylogeny Including Data from Additional Subspecies Provides New Insights into the Historical Biogeography of the Eurasian lynx Lynx lynx" Genes 12, no. 8: 1216. https://doi.org/10.3390/genes12081216