Abstract
The bioorganic basis of plant movement in two plant systems is described in this article: the circadian rhythmic leaf movement known as nyctinasty and trap movement in the Venus flytrap. The bioactive substances responsible for plant movement, the chemical mechanism of the rhythm, and studies on the key protein controlling nyctinasty are presented.
The nyctinastic leaf movement is induced by a pair of leaf-movement factors, and one of each pair is a glucoside. There are two key proteins that are involved in the control of nyctinasty. One is β-glucosidase: a biological clock regulates the activity of β-glucosidase, which deactivates the glucoside-type leaf-movement factor, controlling the balance in the concentrations of the leaf-closing and -opening factors. The other is the specific receptor for each leaf-movement factor: the genuine target cell for each leaf-movement factor is confirmed to be a motor cell from leaflet pulvini, and the specific receptors that regulate the turgor of motor cells are localized in the membrane fraction.
The article also discusses the isolation of the "memory" substance from the Venus flytrap and presents a mechanism for this action.
Conference
International Symposium on Chemistry of Natural Products (ISCNP-25) and 5th International Conference on Biodiversity (ICOB-5), International Conference on Biodiversity, International Symposium on the Chemistry of Natural Products, ICOB, ISCNP, Biodiversity, Natural Products, 25th, Kyoto, Japan, 2006-07-23–2006-07-28
References
1. C. Darwin. The Power of Movement in Plants, John Murray, London (1880).10.5962/bhl.title.102319Search in Google Scholar
2. doi:10.1146/annurev.pp.32.060181.000503, R. L. Satter, A. W. Galston. Annu. Rev. Plant Physiol. 32, 83 (1981).Search in Google Scholar
3. doi:10.1111/j.1399-3054.1988.tb06384.x, R. L. Satter, N. Moran. Physiol. Plant. 72, 816 (1988).Search in Google Scholar
4. R. L. Satter, H. L. Gorton, T. C. Vogelmann (Eds.). The Pulvinus: Motor Organ for Leaf Movement. Current Topics in Plant Physiology, Vol. 3, American Society of Plant Physiologists, Rockville MD (1990).Search in Google Scholar
5. doi:10.1104/pp.123.3.833, S. Suh, N. Moran, Y. Lee. Plant Physiol. 123, 833 (2000).Search in Google Scholar
6. doi:10.1104/pp.124.2.911, M. Moshelion, N. Moran. Plant Physiol. 124, 911 (2000).Search in Google Scholar
7. doi:10.1104/pp.128.2.634, M. Moshelion, D. Becker, K. Czempinski, B. Mueller-Roeber, B. Attali, R. Hedrich, N. Moran. Plant Physiol. 128, 634 (2002).Search in Google Scholar
8. doi:10.1002/anie.198306951, H. Schildcknecht. Angew. Chem., Int. Ed. Engl. 22, 695 (1983).Search in Google Scholar
9. doi:10.1002/(SICI)1521-3773(20000417)39:8<1400::AID-ANIE1400>3.0.CO;2-Z, M. Ueda, S. Yamamura. Angew. Chem., Int. Ed. 39, 1400 (2000).Search in Google Scholar
10. doi:10.1246/cl.1987.511, E. Miyoshi, Y. Shizuri, S. Yamamura. Chem. Lett. 16, 511 (1987).Search in Google Scholar
11. doi:10.1016/S0040-4039(00)99303-1, H. Shigemori, N. Sakai, E. Miyoshi, Y. Shizuri, S. Yamamura. Tetrahedron Lett. 30, 3991 (1989).Search in Google Scholar
12. doi:10.1016/S0040-4020(01)85423-5, H. Shigemori, N. Sakai, E. Miyoshi, Y. Shizuri, S. Yamamura. Tetrahedron 46, 383 (1990).Search in Google Scholar
13. doi:10.1016/0031-9422(95)00064-E, M. Ueda, M. Niwa, S. Yamamura. Phytochemistry 39, 817 (1995).Search in Google Scholar
14. doi:10.1016/0040-4039(95)01256-H, M. Ueda, T. Shigemori-Suzuki, S. Yamamura. Tetrahedron Lett. 36, 6267 (1995).Search in Google Scholar
15. doi:10.1016/S0040-4039(97)00376-6, M. Ueda, T. Ohnuki, S. Yamamura. Tetrahedron Lett. 38, 2497 (1997).Search in Google Scholar
16. doi:10.1016/S0040-4039(97)00578-9, M. Ueda, C. Tashiro, S. Yamamura. Tetrahedron Lett. 38, 3253 (1997).Search in Google Scholar
17. doi:10.1016/S0040-4039(98)02237-0, M. Ueda, M. Asano, S. Yamamura. Tetrahedron Lett. 39, 9731 (1998).Search in Google Scholar
18. doi:10.1016/S0031-9422(98)00134-4, M. Ueda, T. Ohnuki, S. Yamamura. Phytochemistry 49, 633 (1998).Search in Google Scholar
19. doi:10.1016/S0040-4039(98)02349-1, M. Ueda, S. Yamamura. Tetrahedron Lett. 40, 353 (1999).Search in Google Scholar
20. doi:10.1016/S0040-4039(99)00342-1, M. Ueda, S. Yamamura. Tetrahedron Lett. 40, 2981 (1999).Search in Google Scholar
21. doi:10.1016/S0040-4020(00)00729-8, M. Ueda, M. Okazaki, K. Ueda, S. Yamamura. Tetrahedron 56, 8101 (2000).Search in Google Scholar
22. doi:10.1016/S0040-4020(99)00618-3, M. Ueda, Y. Sawai, S. Yamamura. Tetrahedron 55, 10925 (1999).Search in Google Scholar
23. doi:10.1016/S0031-9422(99)00467-7, M. Ueda, H. Shigemori, N. Sata, S. Yamamura. Phytochemistry 53, 39 (2000).Search in Google Scholar
24. doi:10.1016/S0040-4020(98)00747-9, T. Ohnuki, M. Ueda, S. Yamamura. Tetrahedron 54, 12173 (1998).Search in Google Scholar
25. doi:10.1271/bbb.62.2133, M. Ueda, Y. Sawai, Y. Shibazaki, C. Tashiro, T. Ohnuki, S. Yamamura. Biosci. Biotechnol. Biochem. 62, 2133 (1998).Search in Google Scholar
26. doi:10.1016/S0040-4020(99)00236-7, M. Ueda, M. Asano, Y. Sawai, S. Yamamura. Tetrahedron 55, 5781 (1999).Search in Google Scholar
27. doi:10.1039/b308764f, H. Nagano, E. Kato, S. Yamamura, M. Ueda. Org. Biomol. Chem. 1, 3186 (2003).Search in Google Scholar
28. doi:10.1016/j.tetlet.2006.02.123, Y. Nakamura, H. Kiyota, T. Kumagai, M. Ueda. Tetrahedron Lett. 47, 2893 (2006).Search in Google Scholar
29. doi:10.1016/j.tet.2006.06.092, Y. Nakamura, R. Miyatake, A. Matsubara, H. Kiyota, M. Ueda. Tetrahedron 62, 8805 (2006).Search in Google Scholar
30. doi:10.1246/cl.2006.744, Y. Nakamura, A. Matsubara, M. Okada, T. Kumagai, M. Ueda. Chem. Lett. 35, 744 (2006).Search in Google Scholar
31. doi:10.1016/S0040-4020(01)00999-1, T. Sugimoto, Y. Wada, S. Yamamura, M. Ueda. Tetrahedron 57, 9817 (2001).Search in Google Scholar
32. doi:10.1246/cl.2002.1118, T. Sugimoto, S. Yamamura, M. Ueda. Chem. Lett. 31, 1118 (2002).Search in Google Scholar
33. doi:10.1021/bi00185a001, G. Doman, G. D. Prestwich. Biochemistry 33, 5661 (1994).Search in Google Scholar
34. doi:10.1016/S0167-7799(99)01402-X, G. Doman, G. D. Prestwich. Trends Biotechnol. 18, 64 (2000).Search in Google Scholar
35. doi:10.1002/anie.199512961, F. Kotzyba-Hilbert, I. Kapfer, M. Goeldner. Angew. Chem., Int. Ed. 34, 1296 (1995).Search in Google Scholar
36. doi:10.1074/jbc.275.20.15520, Y. Matsubayashi, Y. Sakagami. J. Biol. Chem. 275, 15520 (2000).Search in Google Scholar
37. doi:10.1016/j.tetlet.2003.10.150, T. Sugimoto, T. Fujii, Y. Idutu, S. Yamamura, M. Ueda. Tetrahedron Lett. 45, 335 (2004).Search in Google Scholar
38. doi:10.1016/j.tet.2005.06.022, T. Fujii, Y. Manabe, T. Sugimoto, M. Ueda. Tetrahedron 61, 7874 (2005).Search in Google Scholar
39. E. Kato, T. Kumagai, M. Ueda. Abstract of papers; 47th Symposium on the Chemistry of Natural Products, pp. 229-234 (2005).Search in Google Scholar
40. C. Darwin. Insectivorous Plants, John Murray, London (1875).10.5962/bhl.title.99933Search in Google Scholar
41. S. Ichiishi, T. Nagamitsu, Y. Kondo, T. Iwashita, K. Kondo, N. Tagashira. Plant Biotechnol. 16, 235 (1999).10.5511/plantbiotechnology.16.235Search in Google Scholar
42. T. Iijima, T. Shibaoka. Plant Cell Physiol. 26, 1 (1985).Search in Google Scholar
43. J. Burdon-Sandersun. Proc. R. Soc., London 21, 495 (1873).10.1098/rspl.1872.0092Search in Google Scholar
© 2013 Walter de Gruyter GmbH, Berlin/Boston