iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://dx.doi.org/10.1351/pac200779040519
Endogenous factors involved in the regulation of movement and "memory" in plants Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Endogenous factors involved in the regulation of movement and "memory" in plants

  • Minoru Ueda , Yoko Nakamura and Masahiro Okada

Abstract

The bioorganic basis of plant movement in two plant systems is described in this article: the circadian rhythmic leaf movement known as nyctinasty and trap movement in the Venus flytrap. The bioactive substances responsible for plant movement, the chemical mechanism of the rhythm, and studies on the key protein controlling nyctinasty are presented.

The nyctinastic leaf movement is induced by a pair of leaf-movement factors, and one of each pair is a glucoside. There are two key proteins that are involved in the control of nyctinasty. One is β-glucosidase: a biological clock regulates the activity of β-glucosidase, which deactivates the glucoside-type leaf-movement factor, controlling the balance in the concentrations of the leaf-closing and -opening factors. The other is the specific receptor for each leaf-movement factor: the genuine target cell for each leaf-movement factor is confirmed to be a motor cell from leaflet pulvini, and the specific receptors that regulate the turgor of motor cells are localized in the membrane fraction.

The article also discusses the isolation of the "memory" substance from the Venus flytrap and presents a mechanism for this action.


Conference

International Symposium on Chemistry of Natural Products (ISCNP-25) and 5th International Conference on Biodiversity (ICOB-5), International Conference on Biodiversity, International Symposium on the Chemistry of Natural Products, ICOB, ISCNP, Biodiversity, Natural Products, 25th, Kyoto, Japan, 2006-07-23–2006-07-28


References

1. C. Darwin. The Power of Movement in Plants, John Murray, London (1880).10.5962/bhl.title.102319Search in Google Scholar

2. doi:10.1146/annurev.pp.32.060181.000503, R. L. Satter, A. W. Galston. Annu. Rev. Plant Physiol. 32, 83 (1981).Search in Google Scholar

3. doi:10.1111/j.1399-3054.1988.tb06384.x, R. L. Satter, N. Moran. Physiol. Plant. 72, 816 (1988).Search in Google Scholar

4. R. L. Satter, H. L. Gorton, T. C. Vogelmann (Eds.). The Pulvinus: Motor Organ for Leaf Movement. Current Topics in Plant Physiology, Vol. 3, American Society of Plant Physiologists, Rockville MD (1990).Search in Google Scholar

5. doi:10.1104/pp.123.3.833, S. Suh, N. Moran, Y. Lee. Plant Physiol. 123, 833 (2000).Search in Google Scholar

6. doi:10.1104/pp.124.2.911, M. Moshelion, N. Moran. Plant Physiol. 124, 911 (2000).Search in Google Scholar

7. doi:10.1104/pp.128.2.634, M. Moshelion, D. Becker, K. Czempinski, B. Mueller-Roeber, B. Attali, R. Hedrich, N. Moran. Plant Physiol. 128, 634 (2002).Search in Google Scholar

8. doi:10.1002/anie.198306951, H. Schildcknecht. Angew. Chem., Int. Ed. Engl. 22, 695 (1983).Search in Google Scholar

9. doi:10.1002/(SICI)1521-3773(20000417)39:8<1400::AID-ANIE1400>3.0.CO;2-Z, M. Ueda, S. Yamamura. Angew. Chem., Int. Ed. 39, 1400 (2000).Search in Google Scholar

10. doi:10.1246/cl.1987.511, E. Miyoshi, Y. Shizuri, S. Yamamura. Chem. Lett. 16, 511 (1987).Search in Google Scholar

11. doi:10.1016/S0040-4039(00)99303-1, H. Shigemori, N. Sakai, E. Miyoshi, Y. Shizuri, S. Yamamura. Tetrahedron Lett. 30, 3991 (1989).Search in Google Scholar

12. doi:10.1016/S0040-4020(01)85423-5, H. Shigemori, N. Sakai, E. Miyoshi, Y. Shizuri, S. Yamamura. Tetrahedron 46, 383 (1990).Search in Google Scholar

13. doi:10.1016/0031-9422(95)00064-E, M. Ueda, M. Niwa, S. Yamamura. Phytochemistry 39, 817 (1995).Search in Google Scholar

14. doi:10.1016/0040-4039(95)01256-H, M. Ueda, T. Shigemori-Suzuki, S. Yamamura. Tetrahedron Lett. 36, 6267 (1995).Search in Google Scholar

15. doi:10.1016/S0040-4039(97)00376-6, M. Ueda, T. Ohnuki, S. Yamamura. Tetrahedron Lett. 38, 2497 (1997).Search in Google Scholar

16. doi:10.1016/S0040-4039(97)00578-9, M. Ueda, C. Tashiro, S. Yamamura. Tetrahedron Lett. 38, 3253 (1997).Search in Google Scholar

17. doi:10.1016/S0040-4039(98)02237-0, M. Ueda, M. Asano, S. Yamamura. Tetrahedron Lett. 39, 9731 (1998).Search in Google Scholar

18. doi:10.1016/S0031-9422(98)00134-4, M. Ueda, T. Ohnuki, S. Yamamura. Phytochemistry 49, 633 (1998).Search in Google Scholar

19. doi:10.1016/S0040-4039(98)02349-1, M. Ueda, S. Yamamura. Tetrahedron Lett. 40, 353 (1999).Search in Google Scholar

20. doi:10.1016/S0040-4039(99)00342-1, M. Ueda, S. Yamamura. Tetrahedron Lett. 40, 2981 (1999).Search in Google Scholar

21. doi:10.1016/S0040-4020(00)00729-8, M. Ueda, M. Okazaki, K. Ueda, S. Yamamura. Tetrahedron 56, 8101 (2000).Search in Google Scholar

22. doi:10.1016/S0040-4020(99)00618-3, M. Ueda, Y. Sawai, S. Yamamura. Tetrahedron 55, 10925 (1999).Search in Google Scholar

23. doi:10.1016/S0031-9422(99)00467-7, M. Ueda, H. Shigemori, N. Sata, S. Yamamura. Phytochemistry 53, 39 (2000).Search in Google Scholar

24. doi:10.1016/S0040-4020(98)00747-9, T. Ohnuki, M. Ueda, S. Yamamura. Tetrahedron 54, 12173 (1998).Search in Google Scholar

25. doi:10.1271/bbb.62.2133, M. Ueda, Y. Sawai, Y. Shibazaki, C. Tashiro, T. Ohnuki, S. Yamamura. Biosci. Biotechnol. Biochem. 62, 2133 (1998).Search in Google Scholar

26. doi:10.1016/S0040-4020(99)00236-7, M. Ueda, M. Asano, Y. Sawai, S. Yamamura. Tetrahedron 55, 5781 (1999).Search in Google Scholar

27. doi:10.1039/b308764f, H. Nagano, E. Kato, S. Yamamura, M. Ueda. Org. Biomol. Chem. 1, 3186 (2003).Search in Google Scholar

28. doi:10.1016/j.tetlet.2006.02.123, Y. Nakamura, H. Kiyota, T. Kumagai, M. Ueda. Tetrahedron Lett. 47, 2893 (2006).Search in Google Scholar

29. doi:10.1016/j.tet.2006.06.092, Y. Nakamura, R. Miyatake, A. Matsubara, H. Kiyota, M. Ueda. Tetrahedron 62, 8805 (2006).Search in Google Scholar

30. doi:10.1246/cl.2006.744, Y. Nakamura, A. Matsubara, M. Okada, T. Kumagai, M. Ueda. Chem. Lett. 35, 744 (2006).Search in Google Scholar

31. doi:10.1016/S0040-4020(01)00999-1, T. Sugimoto, Y. Wada, S. Yamamura, M. Ueda. Tetrahedron 57, 9817 (2001).Search in Google Scholar

32. doi:10.1246/cl.2002.1118, T. Sugimoto, S. Yamamura, M. Ueda. Chem. Lett. 31, 1118 (2002).Search in Google Scholar

33. doi:10.1021/bi00185a001, G. Doman, G. D. Prestwich. Biochemistry 33, 5661 (1994).Search in Google Scholar

34. doi:10.1016/S0167-7799(99)01402-X, G. Doman, G. D. Prestwich. Trends Biotechnol. 18, 64 (2000).Search in Google Scholar

35. doi:10.1002/anie.199512961, F. Kotzyba-Hilbert, I. Kapfer, M. Goeldner. Angew. Chem., Int. Ed. 34, 1296 (1995).Search in Google Scholar

36. doi:10.1074/jbc.275.20.15520, Y. Matsubayashi, Y. Sakagami. J. Biol. Chem. 275, 15520 (2000).Search in Google Scholar

37. doi:10.1016/j.tetlet.2003.10.150, T. Sugimoto, T. Fujii, Y. Idutu, S. Yamamura, M. Ueda. Tetrahedron Lett. 45, 335 (2004).Search in Google Scholar

38. doi:10.1016/j.tet.2005.06.022, T. Fujii, Y. Manabe, T. Sugimoto, M. Ueda. Tetrahedron 61, 7874 (2005).Search in Google Scholar

39. E. Kato, T. Kumagai, M. Ueda. Abstract of papers; 47th Symposium on the Chemistry of Natural Products, pp. 229-234 (2005).Search in Google Scholar

40. C. Darwin. Insectivorous Plants, John Murray, London (1875).10.5962/bhl.title.99933Search in Google Scholar

41. S. Ichiishi, T. Nagamitsu, Y. Kondo, T. Iwashita, K. Kondo, N. Tagashira. Plant Biotechnol. 16, 235 (1999).10.5511/plantbiotechnology.16.235Search in Google Scholar

42. T. Iijima, T. Shibaoka. Plant Cell Physiol. 26, 1 (1985).Search in Google Scholar

43. J. Burdon-Sandersun. Proc. R. Soc., London 21, 495 (1873).10.1098/rspl.1872.0092Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2007-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.11.2024 from https://www.degruyter.com/document/doi/10.1351/pac200779040519/html
Scroll to top button