Allostery has come of age; the number, breadth and functional roles of documented proteinallostery cases are rising quickly. Since all dynamic proteins are potentially allosteric and allostery plays crucial roles in all cellular pathways, sorting and classifying allosteric mechanisms in proteins should be extremely useful in understanding and predicting how the signals are regulated and transmitted through the dynamic multi-molecular cellular organizations. Classification organizes the complex information thereby unraveling relationships and patterns in molecular activation and repression. In signaling, current classification schemes consider classes of molecules according to their functions; for example, epinephrine and norepinephrine secreted by the central nervous system are classified as neurotransmitters. Other schemes would account for epinephrine when secreted by the adrenal medulla to be hormone-like. Yet, such classifications account for the global function of the molecule; not for the molecular mechanism of how the signal transmission initiates and how it is transmitted. Here we provide a unified view of allostery and the first classification framework. We expect that a classification scheme would assist in comprehension of allosteric mechanisms, in prediction of signaling on the molecular level, in better comprehension of pathways and regulation of the complex signals, in translating them to the cascading events, and in allosteric drug design. We further provide a range of examples illustrating mechanisms in proteinallostery and their classification from the cellular functional standpoint.
This article is Open Access
Please wait while we load your content...
Something went wrong. Try again?