iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://dx.doi.org/10.1038/nphys318
Room-temperature coherent coupling of single spins in diamond | Nature Physics
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Room-temperature coherent coupling of single spins in diamond

Abstract

Coherent coupling between single quantum objects is at the very heart of modern quantum physics. When the coupling is strong enough to prevail over decoherence, it can be used to engineer quantum entangled states. Entangled states have attracted widespread attention because of applications to quantum computing and long-distance quantum communication. For such applications, solid-state hosts are preferred for scalability reasons, and spins are the preferred quantum system in solids because they offer long coherence times. Here we show that a single pair of strongly coupled spins in diamond, associated with a nitrogen-vacancy defect and a nitrogen atom, respectively, can be optically initialized and read out at room temperature. To effect this strong coupling, close proximity of the two spins is required, but large distances from other spins are needed to avoid deleterious decoherence. These requirements were reconciled by implanting molecular nitrogen into high-purity diamond.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure, energy levels and coherence properties of single defects in diamond.
Figure 2: Generation of coupled spin pairs.
Figure 3: Magnetic resonance on NV–N spin pairs.
Figure 4: Polarization transfer between coupled NV–N electron spins and build-up of the polarization of a 15N nuclear spin.

Similar content being viewed by others

References

  1. Li, X. Q. et al. An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809–811 (2003).

    Article  ADS  Google Scholar 

  2. Hettich, C. et al. Nanometer resolution and coherent optical dipole coupling of two individual molecules. Science 298, 385–389 (2002).

    Article  Google Scholar 

  3. Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).

    Article  ADS  Google Scholar 

  4. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  Google Scholar 

  5. Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    Article  ADS  Google Scholar 

  6. Howard, M. et al. Quantum process tomography and Linblad estimation of a solid-state qubit. New J. Phys. 8, 33 (2006).

    Article  ADS  Google Scholar 

  7. Wrachtrup, J. & Jelezko, F. Quantum information processing in diamond. J. Phys. Condens. Matter 18, S807–S824 (2006).

    Article  ADS  Google Scholar 

  8. Greentree, A. D. et al. Critical components for diamond-based quantum coherent devices. J. Phys. Condens. Matter 18, S825–S842 (2006).

    Article  Google Scholar 

  9. Beveratos, A. et al. Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002).

    Article  ADS  Google Scholar 

  10. Olivero, P. et al. Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond. Adv. Mater. 17, 2427–2430 (2005).

    Article  Google Scholar 

  11. Greentree, A. D., Salzman, J., Prawer, S. & Hollenberg, L. C. L. Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms. Phys. Rev. A 73, 013818 (2006).

    Article  ADS  Google Scholar 

  12. Tomljenovic-Hanic, S., Steel, M. J., Sterke, C. M. d. & Salzman, J. Diamond based photonic crystal microcavities. Opt. Express 14, 3556–3562 (2006).

    Article  ADS  Google Scholar 

  13. Kennedy, T. A., Colton, J. S., Butler, J. E., Linares, R. C. & Doering, P. J. Long coherence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition. Appl. Phys. Lett. 83, 4190–4192 (2003).

    Article  ADS  Google Scholar 

  14. Epstein, R. J., Mendoza, F. M., Kato, Y. K. & Awschalom, D. D. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nature Phys. 1, 94–98 (2005).

    Article  ADS  Google Scholar 

  15. Meijer, J. et al. Generation of single color centers by focused nitrogen implantation. Appl. Phys. Lett. 87, 261909 (2005).

    Article  ADS  Google Scholar 

  16. Rabeau, J. R. et al. Implantation of labelled single nitrogen vacancy centers in diamond using 15N . Appl. Phys. Lett. 88, 023113 (2006).

    Article  ADS  Google Scholar 

  17. Goss, J. P. et al. Comment on “Electronic structure of the N-V center in diamond: Theory”. Phys. Rev. B 56, 16031–16032 (1997).

    Article  ADS  Google Scholar 

  18. He, X. F., Manson, N. B. & Fisk, P. T. H. Paramagnetic-resonance of photoexcited N-V defects in diamond. II. Hyperfine interaction with the N-14 nucleus. Phys. Rev. B 47, 8816–8822 (1993).

    Article  ADS  Google Scholar 

  19. Manson, N. B., Harrison, J. P. & Sellars, M. J. The nitrogen-vacancy in diamond revisited. Preprint at <http://arxiv.org/abs/cond-mat/0601360> (2006).

  20. Kennedy, T. A. et al. Single-qubit operations with the nitrogen-vacancy center in diamond. Phys. Status Solidi B 233, 416–426 (2002).

    Article  ADS  Google Scholar 

  21. Hoch, M. J. R. & Reynhardt, E. C. Nuclear-spin-lattice relaxation of dilute spins in semiconducting diamond. Phys. Rev. B 37, 9222–9226 (1988).

    Article  ADS  Google Scholar 

  22. Khutsish, G. Spin diffusion. Sov. Phys. Uspekhi-USSR 8, 743 (1966).

    Article  ADS  Google Scholar 

  23. de Sousa, R. & Das Sarma, S. Theory of nuclear-induced spectral diffusion: Spin decoherence of phosphorus donors in Si and GaAs quantum dots. Phys. Rev. B 68, 115322 (2003).

    Article  ADS  Google Scholar 

  24. Redman, D. A., Brown, S., Sands, R. H. & Rand, S. C. Spin dynamics and electronic states of N-V centers in diamond by EPR and four-wave-mixing spectroscopy. Phys. Rev. Lett. 67, 3420–3423 (1991).

    Article  ADS  Google Scholar 

  25. Persaud, A. et al. Single ion implantation with scanning probe alignment. J. Vac. Sci. Technol. B 22, 2992–2994 (2004).

    Article  Google Scholar 

  26. Jamieson, D. N. et al. Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions. Appl. Phys. Lett. 86, 202101 (2005).

    Article  ADS  Google Scholar 

  27. Ziegler, J. F. The Stopping and Range of Ions in Matter (Pergamon, New York, 1977–1985).

    Google Scholar 

  28. Wilson, H. F. et al. P2 Dimer implantation in silicon: a molecular dynamics study. Nucl. Instrum. Methods Phys. Res. B (2006) in the press.

  29. Vanoort, E., Stroomer, P. & Glasbeek, M. Low-field optically detected magnetic-resonance of a coupled triplet-doublet defect pair in diamond. Phys. Rev. B 42, 8605–8608 (1990).

    Article  ADS  Google Scholar 

  30. Schweiger, A. & Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance (Oxford Univ. Press, Oxford, 2001).

    Google Scholar 

  31. Kalin, M. & Schweiger, A. Radio-frequency-driven electron spin echo envelope modulation spectroscopy on spin systems with isotropic hyperfine interactions. J. Chem. Phys. 115, 10863–10875 (2001).

    Article  ADS  Google Scholar 

  32. Charnock, F. T. & Kennedy, T. A. Combined optical and microwave approach for performing quantum spin operations on the nitrogen-vacancy center in diamond. Phys. Rev. B 64, 041201 (2001).

    Article  ADS  Google Scholar 

  33. Abragam, A. Principles of Nuclear Magnetism (Clarendon, Oxford, 1961).

    Google Scholar 

  34. Lai, C. W., Maletinsky, P., Badolato, A. & Imamoglu, A. Knight-field-enabled nuclear spin polarization in single quantum dots. Phys. Rev. Lett. 96, 167403 (2006).

    Article  ADS  Google Scholar 

  35. Cummins, H. K., Llewellyn, G. & Jones, J. A. Tackling systematic errors in quantum logic gates with composite rotations. Phys. Rev. A 67, 042308 (2003).

    Article  ADS  Google Scholar 

  36. Morton, J. J. L. et al. High fidelity single qubit operations using pulsed electron paramagnetic resonance. Phys. Rev. Lett. 95, 200501 (2005).

    Article  ADS  Google Scholar 

  37. van Wyk, J. A., Reynhardt, E. C., High, G. L. & Kiflawi, I. The dependences of ESR line widths and spin-spin relaxation times of single nitrogen defects on the concentration of nitrogen defects in diamond. J. Phys. D 30, 1790–1793 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by DFG (project SFB/TR 21), EU (Integrated Project Qubit Applications—QAP—funded by the IST directorate as Contract Number 015848) and ‘Landesstiftung B-W’ (project ‘Atomoptik’). The single-ion implantation work was supported by the Australian Research Council, the Australian Government, and the US National Security Agency (NSA), Advanced Research and Development Activity (ARDA), and the Army Research Office (ARO) under contract numbers W911NF-04-1-0290 and W911NF-05-1-0284, and DARPA QuIST under AFOSR contract number C02-00060. We thank G. Tamanyan for technical assistance with the implantations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fedor Jelezko or Jörg Wrachtrup.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaebel, T., Domhan, M., Popa, I. et al. Room-temperature coherent coupling of single spins in diamond. Nature Phys 2, 408–413 (2006). https://doi.org/10.1038/nphys318

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys318

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing