iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://dx.doi.org/10.1038/nnano.2012.34
Real-time single-molecule imaging of quantum interference | Nature Nanotechnology
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Real-time single-molecule imaging of quantum interference

An Erratum to this article was published on 06 August 2012

This article has been updated

Abstract

The observation of interference patterns in double-slit experiments with massive particles is generally regarded as the ultimate demonstration of the quantum nature of these objects. Such matter–wave interference has been observed for electrons1, neutrons2, atoms3,4 and molecules5,6,7 and, in contrast to classical physics, quantum interference can be observed when single particles arrive at the detector one by one. The build-up of such patterns in experiments with electrons has been described as the “most beautiful experiment in physics”8,9,10,11. Here, we show how a combination of nanofabrication and nano-imaging allows us to record the full two-dimensional build-up of quantum interference patterns in real time for phthalocyanine molecules and for derivatives of phthalocyanine molecules, which have masses of 514 AMU and 1,298 AMU respectively. A laser-controlled micro-evaporation source was used to produce a beam of molecules with the required intensity and coherence, and the gratings were machined in 10-nm-thick silicon nitride membranes to reduce the effect of van der Waals forces. Wide-field fluorescence microscopy detected the position of each molecule with an accuracy of 10 nm and revealed the build-up of a deterministic ensemble interference pattern from single molecules that arrived stochastically at the detector. In addition to providing this particularly clear demonstration of wave–particle duality, our approach could also be used to study larger molecules and explore the boundary between quantum and classical physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Set-up for laser-evaporation, diffraction and nano-imaging of complex molecules.
Figure 2: Single-molecule imaging of PcH2 with subwavelength accuracy.
Figure 3: Build-up of quantum interference.
Figure 4: Comparison of interference patterns for PcH2 and F24PcH2.

Similar content being viewed by others

Change history

  • 25 July 2012

    In the version of this Letter originally published, in Fig. 1c, the two white arrows were incorrectly positioned. This has now been corrected in the HTML and PDF versions.

References

  1. Jönsson, C. Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten. Z. Phys. 161, 454–474 (1961).

    Article  Google Scholar 

  2. Zeilinger, A., Gähler, R., Shull, C. G., Treimer, W. & Mampe, W. Single- and double-slit diffraction of neutrons. Rev. Mod. Phys. 60, 1067–1073 (1988).

    Article  CAS  Google Scholar 

  3. Keith, D. W., Schattenburg, M. L., Smith, H. I. & Pritchard, D. E. Diffraction of atoms by a transmission grating. Phys. Rev. Lett. 61, 1580–1583 (1988).

    Article  CAS  Google Scholar 

  4. Carnal, O. & Mlynek, J. Young's double-slit experiment with atoms: a simple atom interferometer. Phys. Rev. Lett. 66, 2689–2692 (1991).

    Article  CAS  Google Scholar 

  5. Schöllkopf, W. & Toennies, J. P. Nondestructive mass selection of small van der Waals clusters. Science 266, 1345–1348 (1994).

    Article  Google Scholar 

  6. Arndt, M. et al. Wave–particle duality of C60 molecules. Nature 401, 680–682 (1999).

    Article  CAS  Google Scholar 

  7. Zhao, B. S., Meijer, G. & Schollkopf, W. Quantum reflection of He2 several nanometers above a grating surface. Science 331, 892–894 (2011).

    Article  CAS  Google Scholar 

  8. Crease, R. P. The most beautiful experiment in physics. Phys. World 15, 15–17 (September 2002).

    Google Scholar 

  9. The double-slit experiment; available at http://physicsworld.com/cws/article/print/9745 (2002).

  10. Merli, P., Missiroli, G. & Pozzi, G. On the statistical aspect of electron interference phenomena. Am. J. Phys. 44, 306–307 (1976).

    Article  Google Scholar 

  11. Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T. & Ezawa, H. Demonstration of single-electron buildup of an interference pattern. Am. J. Phys. 57, 117–120 (1989).

    Article  Google Scholar 

  12. Feynman, R., Leighton, R. B. & Sands, M. L. in Quantum Mechanics Vol. 3, Ch. 1 (Addison Wesley, 1965).

    Google Scholar 

  13. Juffmann, T. et al. Wave and particle in molecular interference lithography. Phys. Rev. Lett. 103, 263601 (2009).

    Article  Google Scholar 

  14. Szriftgiser, P., Guéry-Odelin, D., Arndt, M. & Dalibard, J. Atomic wave diffraction and interference using temporal slits. Phys. Rev. Lett. 77, 4–7 (1996).

    Article  CAS  Google Scholar 

  15. Garcia, N., Saveliev, I. G. & Sharonov, M. Time-resolved diffraction and interference: Young's interference with photons of different energy as revealed by time resolution. Phil. Trans. R. Soc. A 360, 1039–1059 (2002).

    Article  CAS  Google Scholar 

  16. Lindner, F. et al. Attosecond double-slit experiment. Phys. Rev. Lett. 95, 040401 (2005).

    Article  CAS  Google Scholar 

  17. Akoury, D. et al. The simplest double slit: interference and entanglement in double photoionization of H2 . Science 318, 949–952 (2007).

    Article  CAS  Google Scholar 

  18. Canton, S. E. et al. Direct observation of Young's double-slit interferences in vibrationally resolved photoionization of diatomic molecules. Proc. Natl Acad Sci. USA 108, 7302–7306 (2011).

    Article  CAS  Google Scholar 

  19. Zimmermann, B. et al. Localization and loss of coherence in molecular double-slit experiments. Nature Phys. 4, 649–655 (2008).

    Article  CAS  Google Scholar 

  20. Nairz, O., Arndt, M. & Zeilinger, A. Quantum interference experiments with large molecules. Am. J. Phys. 71, 319–325 (2003).

    Article  CAS  Google Scholar 

  21. Born, M. & Wolf, E. Principles of Optics (Pergamon Press, 1993).

    Google Scholar 

  22. Wohlfart, K. et al. Alternating-gradient focusing and deceleration of large molecules. Phys. Rev. A 77, 031404R (2008).

    Article  Google Scholar 

  23. Deachapunya, S. et al. Slow beams of massive molecules. Eur. Phys. J. D 46, 307–313 (2007).

    Article  Google Scholar 

  24. Gerlich, S. et al. Quantum interference of large organic molecules. Nature Commun. 2, 263 (2011).

    Article  Google Scholar 

  25. Nairz, O., Arndt, M. & Zeilinger, A. Experimental challenges in fullerene interferometry. J. Mod. Opt. 47, 2811–2821 (2000).

    Article  CAS  Google Scholar 

  26. Compagnon, I., Antoine, R., Rayane, D., Broyer, M. & Dugourd, P. Vibration induced electric dipole in a weakly bound molecular complex. Phys. Rev. Lett. 89, 253001 (2002).

    Article  CAS  Google Scholar 

  27. Gring, M. et al. Influence of conformational molecular dynamics on matter wave interferometry. Phys. Rev. A 81, 031604 (2010).

    Article  Google Scholar 

  28. Moerner, W. E. & Kador, L. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538 (1989).

    Article  CAS  Google Scholar 

  29. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  CAS  Google Scholar 

  30. Gordon, M. P., Ha, T. & Selvin, P. R. Single-molecule high-resolution imaging with photobleaching. Proc. Natl Acad. Sci. USA 101, 6462–6465 (2004).

    Article  CAS  Google Scholar 

  31. Gerlich, S. et al. A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules. Nature Phys. 3, 711–715 (2007).

    Article  CAS  Google Scholar 

  32. Grisenti, R. E., Schöllkopf, W., Toennies, J. P., Hegerfeldt, G. C. & Köhler, T. Determination of atom–surface van der Waals potentials from transmission-grating diffraction intensities. Phys. Rev. Lett. 83, 1755–1758 (1999).

    Article  CAS  Google Scholar 

  33. Juffmann, T. et al. Wave and particle in molecular interference lithography. Phys. Rev. Lett. 103, 263601 (2009).

    Article  Google Scholar 

  34. Nairz, O., Brezger, B., Arndt, M. & Zeilinger, A. Diffraction of complex molecules by structures made of light. Phys. Rev. Lett. 87, 160401 (2001).

    Article  CAS  Google Scholar 

  35. Juffmann, T., Nimmrichter, S., Arndt, M., Gleiter, H. & Hornberger, K. New prospects for de Broglie interferometry. Found. Phys. 42, 98–110 (2010).

    Article  Google Scholar 

  36. Hornberger, K., Gerlich, S., Haslinger, P., Nimmrichter, S. & Arndt, M. Quantum interference of clusters and molecules. Rev. Mod. Phys. 84, 157–173 (2012).

    Article  CAS  Google Scholar 

  37. Alzeer, J., Roth, P. J. C. & Luedtke, N. W. An efficient two-step synthesis of metal-free phthalocyanines using a Zn(II) template. Chem. Commun. 1970–1971 (2009).

Download references

Acknowledgements

This project was funded by the FWF (contract FWF-Z149-N16; Wittgenstein) and the ESF/FWF EuroCore Program MIME (I146). The authors thank P. Geyer and P. Haslinger for building the in situ sputter cleaning apparatus, S. Deachapunya for his collaboration in testing the vapour pressures of PcH2, S. Nimmrichter for theory support and M. Tomandl for rendering Fig. 1. M.A. thanks W.E. Moerner for helpful discussions on single-molecule fluorescence. The chemical synthesis in Basel was supported by the ESF EuroCore Programme MIME (I146-N16), the Swiss National Science Foundation, and the NCCR ‘Nanoscale Science’.

Author information

Authors and Affiliations

Authors

Contributions

T.J. and M.A. conceived the experiments. T.J., A.M., M.Mu. and O.C. worked on the set-up of the experiment. T.J. performed the diffraction experiments. J.T. and M.Ma. designed and synthesized the F24PcH2 molecules. A.T. and O.C. fabricated the 10 nm diffraction gratings. P.A. developed the basis for the micro-evaporation source. M.A. and T.J. wrote the paper, with comments by all authors.

Corresponding author

Correspondence to Markus Arndt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 679 kb)

Supplementary information

Supplementary movie 1 (AVI 16918 kb)

Supplementary information

Supplementary movie 2 (AVI 5386 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juffmann, T., Milic, A., Müllneritsch, M. et al. Real-time single-molecule imaging of quantum interference. Nature Nanotech 7, 297–300 (2012). https://doi.org/10.1038/nnano.2012.34

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.34

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing