Abstract
Graphene and hexagonal boron nitride (h-BN) have similar crystal structures with a lattice constant difference of only 2%. However, graphene is a zero-bandgap semiconductor with remarkably high carrier mobility at room temperature1,2,3, whereas an atomically thin layer of h-BN4,5,6,7,8,9 is a dielectric with a wide bandgap of ∼5.9 eV. Accordingly, if precise two-dimensional domains of graphene and h-BN can be seamlessly stitched together, hybrid atomic layers with interesting electronic applications could be created10. Here, we show that planar graphene/h-BN heterostructures can be formed by growing graphene in lithographically patterned h-BN atomic layers. Our approach can create periodic arrangements of domains with size ranging from tens of nanometres to millimetres. The resulting graphene/h-BN atomic layers can be peeled off the growth substrate and transferred to various platforms including flexible substrates. We also show that the technique can be used to fabricate two-dimensional devices, such as a split closed-loop resonator that works as a bandpass filter.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).
Chen, J-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotech. 3, 206–209 (2008).
Corso, M. et al. Boron nitride nanomesh. Science 303, 217–220 (2004).
Morscher, M., Corso, M., Greber, T. & Osterwalder, J. Formation of single layer h-BN on Pd(111). Surf. Sci. 600, 3280–3284 (2006).
Goriachko, A. et al. Self-assembly of a hexagonal boron nitride nanomesh on Ru(0001). Langmuir 23, 2928–2931 (2007).
Kester, D. J., Ailey, K. S., Davis, R. F. & More, K. L. Phase evolution in boron-nitride thin-films. J. Mater. Res. 8, 1213–1216 (1993).
Nagashima, A., Tejima, N., Gamou, Y., Kawai, T. & Oshima, C. Electronic dispersion relations of monolayer hexagonal boron nitride formed on the Ni(111) surface. Phys. Rev. B 51, 4606 (1995).
Rokuta, E. et al. Phonon dispersion of an epitaxial monolayer film of hexagonal boron nitride on Ni(111). Phys. Rev. Lett. 79, 4609 (1997).
Levendorf, M. P. et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627–632 (2012).
Wang, H. et al. BN/graphene/BN transistors for RF applications. IEEE Electron. Device Lett. 32, 1209–1211 (2011).
Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).
Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).
Bokdam, M., Khomyakov, P. A., Brocks, G., Zhong, Z. & Kelly, P. J. Electrostatic doping of graphene through ultrathin hexagonal boron nitride films. Nano Lett. 11, 4631–4635 (2011).
Decker, R. G. et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 11, 2291–2295 (2011).
Liu, Z. et al. Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett. 11, 2032–2037 (2011).
Ci, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nature Mater. 9, 430–435 (2010).
Song, L. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010).
Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487–496 (2010).
Lee, C. et al. Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010).
Choon Sik, C., Lee, J. W. & Jaeheung, K. Dual- and triple-mode branch-line ring resonators and harmonic suppressed half-ring resonators. IEEE Trans. Microwave Theory Tech. 54, 3968–3974 (2006).
Grieg, D. D. & Engelmann, H. F. Microstrip—a new transmission technique for the kilomegacycle range. Proc. IRE 40, 1644–1650 (1952).
Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).
Han, S-J. et al. High-frequency graphene voltage amplifier. Nano Lett. 11, 3690–3693 (2011).
Han, W., Nezich, D., Jing, K. & Palacios, T. Graphene frequency multipliers. IEEE Electron. Device Lett. 30, 547–549 (2009).
Qiao, Z., Jung, J., Niu, Q. & MacDonald, A. H. Electronic highways in bilayer graphene. Nano Lett. 11, 3453–3459 (2011).
Krivanek, O. L. et al. An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179–195 (2008).
Acknowledgements
This work was supported by the US Army Research Office (MURI grant W911NF-11-1-0362), the US Office of Naval Research (MURI grant N000014-09-1-1066), the Nanoelectronics Research Corporation (contract S201006), US–Japan Cooperative Research & Education in Terahertz (grant OISE-0968405), the Welch Foundation (grant C-1716), the National Science Foundation (NSF, grant DMR-0928297, NSF grant DMR-0938330 to W.Z.), and Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Program (J.C.I.), which is sponsored by the Office of Basic Energy Sciences, US Department of Energy. The authors would like to thank G. You for help with sample preparation and AFM measurements.
Author information
Authors and Affiliations
Contributions
Z.L. designed and carried out most of the experiments (SEM, TEM, Raman, XPS) and analysed the data. L.M. worked on the CVD growth of graphene. Y.G. and K.P.H. conducted the CVD growth of h-BN. G.S. and S.D.L. fabricated graphene/h-BN patterns by photolithography and FIB. W.Z. carried out STEM experiments. J.Z. and J.Y. performed AFM measurements. X.Y. carried out high-frequency measurements of the graphene/h-BN resonator. R.V., J.L. and P.M.A were responsible for project planning. Z.L., K.P.H., W.Z., J-C.I., J.L. and P.M.A. co-wrote the paper. All authors discussed the results.
Corresponding authors
Supplementary information
Supplementary information
Supplementary information (PDF 11479 kb)
Rights and permissions
About this article
Cite this article
Liu, Z., Ma, L., Shi, G. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature Nanotech 8, 119–124 (2013). https://doi.org/10.1038/nnano.2012.256
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2012.256
This article is cited by
-
A critical review on the effect of morphology, stability, and thermophysical properties of graphene nanoparticles in nanolubricants and nanofluids
Journal of Thermal Analysis and Calorimetry (2023)
-
Lithium adsorption on the interface of graphene/boron nitride nanoribbons
Journal of Materials Science (2023)
-
Investigation of the thermoelectric properties of the perfect and defective (3,7) boron nitride nanosheets by DFT
Pramana (2023)
-
RETRACTED ARTICLE: Polydopamine-modified MWCNT/graphene oxide hybrid 3D carbon nano-structure for flexible symmetric supercapacitor electrodes
Applied Nanoscience (2023)
-
Intrinsic toughening and stable crack propagation in hexagonal boron nitride
Nature (2021)