iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://dx.doi.org/10.1038/nnano.2012.256
In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes | Nature Nanotechnology
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes

Abstract

Graphene and hexagonal boron nitride (h-BN) have similar crystal structures with a lattice constant difference of only 2%. However, graphene is a zero-bandgap semiconductor with remarkably high carrier mobility at room temperature1,2,3, whereas an atomically thin layer of h-BN4,5,6,7,8,9 is a dielectric with a wide bandgap of 5.9 eV. Accordingly, if precise two-dimensional domains of graphene and h-BN can be seamlessly stitched together, hybrid atomic layers with interesting electronic applications could be created10. Here, we show that planar graphene/h-BN heterostructures can be formed by growing graphene in lithographically patterned h-BN atomic layers. Our approach can create periodic arrangements of domains with size ranging from tens of nanometres to millimetres. The resulting graphene/h-BN atomic layers can be peeled off the growth substrate and transferred to various platforms including flexible substrates. We also show that the technique can be used to fabricate two-dimensional devices, such as a split closed-loop resonator that works as a bandpass filter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Creation of millimetre-sized graphene/h-BN in-plane heterostructures.
Figure 2: Creation of micro- to nanoscale patterned graphene/h-BN in-plane heterostructures.
Figure 3: Raman, AFM and TEM characterization of graphene/h-BN interfaces.
Figure 4: Graphene/h-BN FET and split closed-loop resonator.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  CAS  Google Scholar 

  3. Chen, J-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotech. 3, 206–209 (2008).

    Article  CAS  Google Scholar 

  4. Corso, M. et al. Boron nitride nanomesh. Science 303, 217–220 (2004).

    Article  CAS  Google Scholar 

  5. Morscher, M., Corso, M., Greber, T. & Osterwalder, J. Formation of single layer h-BN on Pd(111). Surf. Sci. 600, 3280–3284 (2006).

    Article  CAS  Google Scholar 

  6. Goriachko, A. et al. Self-assembly of a hexagonal boron nitride nanomesh on Ru(0001). Langmuir 23, 2928–2931 (2007).

    Article  CAS  Google Scholar 

  7. Kester, D. J., Ailey, K. S., Davis, R. F. & More, K. L. Phase evolution in boron-nitride thin-films. J. Mater. Res. 8, 1213–1216 (1993).

    Article  CAS  Google Scholar 

  8. Nagashima, A., Tejima, N., Gamou, Y., Kawai, T. & Oshima, C. Electronic dispersion relations of monolayer hexagonal boron nitride formed on the Ni(111) surface. Phys. Rev. B 51, 4606 (1995).

    Article  CAS  Google Scholar 

  9. Rokuta, E. et al. Phonon dispersion of an epitaxial monolayer film of hexagonal boron nitride on Ni(111). Phys. Rev. Lett. 79, 4609 (1997).

    Article  CAS  Google Scholar 

  10. Levendorf, M. P. et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627–632 (2012).

    Article  CAS  Google Scholar 

  11. Wang, H. et al. BN/graphene/BN transistors for RF applications. IEEE Electron. Device Lett. 32, 1209–1211 (2011).

    Article  CAS  Google Scholar 

  12. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    CAS  Google Scholar 

  13. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    Article  CAS  Google Scholar 

  14. Bokdam, M., Khomyakov, P. A., Brocks, G., Zhong, Z. & Kelly, P. J. Electrostatic doping of graphene through ultrathin hexagonal boron nitride films. Nano Lett. 11, 4631–4635 (2011).

    Article  CAS  Google Scholar 

  15. Decker, R. G. et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 11, 2291–2295 (2011).

    Article  CAS  Google Scholar 

  16. Liu, Z. et al. Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett. 11, 2032–2037 (2011).

    Article  CAS  Google Scholar 

  17. Ci, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nature Mater. 9, 430–435 (2010).

    Article  CAS  Google Scholar 

  18. Song, L. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010).

    Article  CAS  Google Scholar 

  19. Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487–496 (2010).

    Article  CAS  Google Scholar 

  20. Lee, C. et al. Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010).

    Article  CAS  Google Scholar 

  21. Choon Sik, C., Lee, J. W. & Jaeheung, K. Dual- and triple-mode branch-line ring resonators and harmonic suppressed half-ring resonators. IEEE Trans. Microwave Theory Tech. 54, 3968–3974 (2006).

    Article  Google Scholar 

  22. Grieg, D. D. & Engelmann, H. F. Microstrip—a new transmission technique for the kilomegacycle range. Proc. IRE 40, 1644–1650 (1952).

    Article  Google Scholar 

  23. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).

    Article  CAS  Google Scholar 

  24. Han, S-J. et al. High-frequency graphene voltage amplifier. Nano Lett. 11, 3690–3693 (2011).

    Article  CAS  Google Scholar 

  25. Han, W., Nezich, D., Jing, K. & Palacios, T. Graphene frequency multipliers. IEEE Electron. Device Lett. 30, 547–549 (2009).

    Article  Google Scholar 

  26. Qiao, Z., Jung, J., Niu, Q. & MacDonald, A. H. Electronic highways in bilayer graphene. Nano Lett. 11, 3453–3459 (2011).

    Article  CAS  Google Scholar 

  27. Krivanek, O. L. et al. An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179–195 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Army Research Office (MURI grant W911NF-11-1-0362), the US Office of Naval Research (MURI grant N000014-09-1-1066), the Nanoelectronics Research Corporation (contract S201006), US–Japan Cooperative Research & Education in Terahertz (grant OISE-0968405), the Welch Foundation (grant C-1716), the National Science Foundation (NSF, grant DMR-0928297, NSF grant DMR-0938330 to W.Z.), and Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Program (J.C.I.), which is sponsored by the Office of Basic Energy Sciences, US Department of Energy. The authors would like to thank G. You for help with sample preparation and AFM measurements.

Author information

Authors and Affiliations

Authors

Contributions

Z.L. designed and carried out most of the experiments (SEM, TEM, Raman, XPS) and analysed the data. L.M. worked on the CVD growth of graphene. Y.G. and K.P.H. conducted the CVD growth of h-BN. G.S. and S.D.L. fabricated graphene/h-BN patterns by photolithography and FIB. W.Z. carried out STEM experiments. J.Z. and J.Y. performed AFM measurements. X.Y. carried out high-frequency measurements of the graphene/h-BN resonator. R.V., J.L. and P.M.A were responsible for project planning. Z.L., K.P.H., W.Z., J-C.I., J.L. and P.M.A. co-wrote the paper. All authors discussed the results.

Corresponding authors

Correspondence to Jun Lou or Pulickel M. Ajayan.

Supplementary information

Supplementary information

Supplementary information (PDF 11479 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Ma, L., Shi, G. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature Nanotech 8, 119–124 (2013). https://doi.org/10.1038/nnano.2012.256

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing