iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://dx.doi.org/10.1038/nmicrobiol.2016.116
The physiology and habitat of the last universal common ancestor | Nature Microbiology
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The physiology and habitat of the last universal common ancestor

Abstract

The concept of a last universal common ancestor of all cells (LUCA, or the progenote) is central to the study of early evolution and life's origin, yet information about how and where LUCA lived is lacking. We investigated all clusters and phylogenetic trees for 6.1 million protein coding genes from sequenced prokaryotic genomes in order to reconstruct the microbial ecology of LUCA. Among 286,514 protein clusters, we identified 355 protein families (0.1%) that trace to LUCA by phylogenetic criteria. Because these proteins are not universally distributed, they can shed light on LUCA's physiology. Their functions, properties and prosthetic groups depict LUCA as anaerobic, CO2-fixing, H2-dependent with a Wood–Ljungdahl pathway, N2-fixing and thermophilic. LUCA's biochemistry was replete with FeS clusters and radical reaction mechanisms. Its cofactors reveal dependence upon transition metals, flavins, S-adenosyl methionine, coenzyme A, ferredoxin, molybdopterin, corrins and selenium. Its genetic code required nucleoside modifications and S-adenosyl methionine-dependent methylations. The 355 phylogenies identify clostridia and methanogens, whose modern lifestyles resemble that of LUCA, as basal among their respective domains. LUCA inhabited a geochemically active environment rich in H2, CO2 and iron. The data support the theory of an autotrophic origin of life involving the Wood–Ljungdahl pathway in a hydrothermal setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogeny for LUCA's genes.
Figure 2: Taxonomic distribution of LUCA's genes grouped by functional categories.
Figure 3: LUCA reconstructed from genome data.
Figure 4: Methyl groups in conserved modified nucleosides and in anaerobic autotroph metabolism.

Similar content being viewed by others

References

  1. Fox, G. E. et al. The phylogeny of prokaryotes. Science 209, 457–463 (1980).

    Article  Google Scholar 

  2. Arndt, N. & Nisbet, E. Processes on the young Earth and the habitats of early life. Annu. Rev. Earth Planet Sci. 40, 521–549 (2012).

    Article  Google Scholar 

  3. Woese, C. The universal ancestor. Proc. Natl Acad. Sci. USA 95, 6854–6859 (1998).

    Article  Google Scholar 

  4. Koonin, E. V. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nature Rev. Microbiol. 1, 127–136 (2003).

    Article  Google Scholar 

  5. Williams, T. A., Foster, P. G., Cox, C. J. & Embley, T. M. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504, 231–236 (2013).

    Article  Google Scholar 

  6. Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc. Natl Acad. Sci. USA 112, 6670–6675 (2015).

    Article  Google Scholar 

  7. Ouzounis, C. A., Kunin, V., Darzentas, N. & Goldovsky, L. A minimal estimate for the gene content of the last universal common ancestor—exobiology from a terrestrial perspective. Res. Microbiol. 157, 57–68 (2006).

    Article  Google Scholar 

  8. Kannan, L., Li, H., Rubinstein, B. & Mushegian, A. Models of gene gain and gene loss for probabilistic reconstruction of gene content in the last universal common ancestor of life. Biol. Direct. 8, 32 (2013).

    Article  Google Scholar 

  9. Nelson-Sathi, S. et al. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517, 77–80 (2015).

    Article  Google Scholar 

  10. Say, R. F. & Fuchs, G. Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme. Nature 464, 1077–1081 (2010).

    Article  Google Scholar 

  11. Fuchs, G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu. Rev. Microbiol. 65, 631–658 (2011).

    Article  Google Scholar 

  12. Baross, J. A. & Hoffman, S. E. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins Life Evol. B 15, 327–345 (1985).

    Article  Google Scholar 

  13. Russell, M. J. & Hall, A. J. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. Lond. 154, 377–402 (1997).

    Article  Google Scholar 

  14. Buckel, W. & Thauer, R. K. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim. Biophys. Acta 1827, 94–113 (2013).

    Article  Google Scholar 

  15. Schuchmann, K. & Müller, V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nature Rev. Microbiol. 12, 809–821 (2014).

    Article  Google Scholar 

  16. Ferry, J. G. & House, C. H. The step-wise evolution of early life driven by energy conservation. Mol. Biol. Evol. 23, 1286–1292 (2006).

    Article  Google Scholar 

  17. Martin, W. & Russell, M. J. On the origin of biochemistry at an alkaline hydrothermal vent. Phil. Trans. R. Soc. Lond. B 362, 1887–1925 (2007).

    Article  Google Scholar 

  18. Mulkidjanian, A. Y., Galperin, M. Y., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Evolutionary primacy of sodium bioenergetics. Biol. Direct. 3, 13 (2008).

    Article  Google Scholar 

  19. Lane, N. & Martin, W. F. The origin of membrane bioenergetics. Cell 151, 1406–1416 (2012).

    Article  Google Scholar 

  20. Déclais, A. C., Marsault, J., Confalonieri, F., La Tour de, C. B. & Duguet, M. Reverse gyrase, the two domains intimately cooperate to promote positive supercoiling. J. Biol. Chem. 275, 19498–19504 (2000).

    Article  Google Scholar 

  21. Ragsdale, S. W. Nickel-based enzyme systems. J. Biol. Chem. 284, 18571–18575 (2009).

    Article  Google Scholar 

  22. Broderick, J. B., Duffus, B. R., Duschene, K. S. & Shepard, E. M. Radical S-adenosylmethionine enzymes. Chem. Rev. 114, 4229–4317 (2014).

    Article  Google Scholar 

  23. Eck, R. V. & Dayhoff, M. O. Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152, 363–366 (1966).

    Article  Google Scholar 

  24. Hall, D. O., Cammack, R. & Rao, K. K. Role of ferredoxins in the origin of life and biological evolution. Nature 233, 136–138 (1971).

    Article  Google Scholar 

  25. Böck, A., Forchhammer, K., Heider, J. & Baron, C. Selenoprotein synthesis: an expansion of the genetic code. Trends Biochem. Sci. 16, 463–467 (1991).

    Article  Google Scholar 

  26. Liu, Y. C., Beer, L. L. & Whitman, W. B. Methanogens: a window into ancient sulfur metabolism. Trends Microbiol. 20, 251–258 (2012).

    Article  Google Scholar 

  27. Evans, P. N. et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350, 434–438 (2015).

    Article  Google Scholar 

  28. Lever, M. A. Acetogenesis in the energy-starved deep biosphere—a paradox? Front. Microbiol. 2, 284 (2012).

    Article  Google Scholar 

  29. Schönheit, P., Buckel, W. & Martin, W. F. On the origin of heterotrophy. Trends Microbiol. 24, 12–25 (2016).

    Article  Google Scholar 

  30. Schrenk, M. O., Brazelton, W. J. & Lang, S. Q. Serpentinization, carbon, and deep life. Rev. Mineral. Geochem. 75, 575–606 (2013).

    Article  Google Scholar 

  31. Etiope, G. & Schoell, M. Abiotic gas: atypical, but not rare. Elements 10, 291–296 (2014).

    Article  Google Scholar 

  32. Proskurowski, G. et al. Abiogenic hydrocarbon production at Lost City hydrothermal field. Science 319, 604–607 (2008).

    Article  Google Scholar 

  33. McDermott, J. M., Seewald, J. S., German, C. R. & Sylva, S. P. Pathways for abiotic organic synthesis at submarine hydrothermal fields. Proc. Natl Acad. Sci. USA 112, 7668–7672 (2015).

    Article  Google Scholar 

  34. Chow, C. S., Lamichhane, T. N. & Mahto, S. K. Expanding the nucleotide repertoire of the ribosome with post-transcriptional modifications. ACS Chem. Biol. 2, 610–619 (2007).

    Article  Google Scholar 

  35. Agris, P. F., Vendeix, F. A. P. & Graham, W. D. tRNA's wobble decoding of the genome: 40 years of modification. J. Mol. Biol. 366, 1–13 (2007).

    Article  Google Scholar 

  36. Grosjean, H., Gupta, R., & Maxwell, E. S. in Archaea: New Models for Prokaryotic Biology (ed. Blum, P.) 171–196 (Caister Academic Press, 2008).

    Google Scholar 

  37. Seewald, J. S., Tolotov, M. Y. & McCollom, T. Experimental investigation of single carbon compounds under hydrothermal conditions. Geochim. Cosmochim. Acta 70, 446–460 (2006).

    Article  Google Scholar 

  38. He, C., Tian, G., Liu, Z. & Feng, S. A mild hydrothermal route to fix carbon dioxide to simple carboxylic acids. Org. Lett. 12, 649–651 (2010).

    Article  Google Scholar 

  39. Horita, J. & Berndt, M. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285, 1055–1057 (1999).

    Article  Google Scholar 

  40. Amend, J. P. & Shock, E. L. Energetics of amino acid synthesis in hydrothermal ecosystems. Science 281, 1659–1662 (1998).

    Article  Google Scholar 

  41. Amend, J. P., LaRowe, D. E., McCollom, T. M. & Shock, E. L. The energetics of organic synthesis inside and outside the cell. Phil. Trans. R. Soc. Lond. B 368, 20120255 (2013).

    Article  Google Scholar 

  42. Yokoyama, S., Watanabe, K. & Miyazawa, T. Dynamic structures and functions of transfer ribonucleic acids from extreme thermophiles. Adv. Biophys. 23, 115–147 (1987).

    Article  Google Scholar 

  43. Helm, M. Post-transcriptional nucleotide modification and alternative folding of RNA. Nucleic Acids Res. 34, 721–733 (2006).

    Article  Google Scholar 

  44. Gottschalk, G. & Thauer, R. K. The Na+-translocating methyltransferase complex from methanogenic archaea. Biochim. Biophys. Acta 1505, 28–36 (2001).

    Article  Google Scholar 

  45. Svetlitchnaia, T., Svetlitchnyi, V., Meyer, O. & Dobbek, H. Structural insights into methyltransfer reactions of a corrinoid iron–sulfur protein involved in acetyl-CoA synthesis. Proc. Natl Acad. Sci. USA 103, 14331–14336 (2006).

    Article  Google Scholar 

  46. Raymond, J. & Segre, D. The effect of oxygen on biochemical networks and the evolution of complex life. Science 311, 1764–1767 (2006).

    Article  Google Scholar 

  47. Dibrova, D. V., Galperin, M. Y. & Mulkidjanian, A. Y. Phylogenomic reconstruction of archaeal fatty acid metabolism. Environ. Microbiol. 16, 907–918 (2014).

    Article  Google Scholar 

  48. Shock, E. L. & Boyd, E. S. Geomicrobiology and microbial geochemistry: principles of geobiochemistry. Elements 11, 389–394 (2015).

    Article  Google Scholar 

  49. Mansy, S. S. et al. Template-directed synthesis of a genetic polymer in a model protocell. Nature 454, 122–125 (2008).

    Article  Google Scholar 

  50. Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nature Chem. 7, 301–307 (2015).

    Article  Google Scholar 

  51. Pruitt, K. D., Tatusova, T., Brown, G. R. & Maglott, D. R. NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 40, D130–D135 (2011).

    Article  Google Scholar 

  52. Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An ancient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002).

    Article  Google Scholar 

  53. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  Google Scholar 

  54. Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European Molecular Biology open software suite. Trends Genet. 16, 276–277 (2000).

    Article  Google Scholar 

  55. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  Google Scholar 

  56. Landan, G. & Graur, D. Heads or tails: a simple reliability check for multiple sequence alignments. Mol. Biol. Evol. 24, 1380–1383 (2007).

    Article  Google Scholar 

  57. Landan, G. & Graur, D. Local reliability measures from sets of co-optimal multiple sequence alignments. Pac. Symp. Biocomput. 13, 15–24 (2008).

    Google Scholar 

  58. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  Google Scholar 

  59. Junier, T. & Zdobnov, E. M. The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics 26, 1669–1670 (2010).

    Article  Google Scholar 

  60. Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).

    Article  Google Scholar 

  61. Ogata, H. et al. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27, 29–34 (1999).

    Article  Google Scholar 

  62. Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).

    Article  Google Scholar 

  63. Machnicka, M. A. et al. MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res. 41, D262–D267 (2013).

    Article  Google Scholar 

  64. Jühling, F. et al. tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res. 37, D159–D162 (2009).

    Article  Google Scholar 

  65. Humphrey, W., Dalke, A. & Schulten, K. VMD—visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Baross and N. Lane for discussions. The authors acknowledge the Zentrum für Informations- und Medientechnologie (ZIM) of the Heinrich-Heine University for computational support and the European Research Council for funding (ERC AdG 666053 to W.F.M.).

Author information

Authors and Affiliations

Authors

Contributions

M.C.W., F.L.S., S.N., M.R. and S.N.-S. performed the bioinformatics analysis. F.L.S. and N.M. carried out the functional classification of the protein families. All authors analysed and discussed the results. W.F.M., F.L.S. and S.N.-S. designed the research. M.C.W., F.L.S., S.N., N.M., S.N.-S. and W.F.M. wrote the paper.

Corresponding author

Correspondence to William F. Martin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1-3, Supplementary Tables 1,3-6, legends for Supplementary Tables 2,7-9, Supplementary References (PDF 1698 kb)

Supplementary Table 2

Functional and taxonomic characterization of the 355 protein families potentially present in LUCA using a threshold of 25% global identity (XLSX 95 kb)

Supplementary Table 7

SAM-dependent enzymes (XLSX 32 kb)

Supplementary Table 8

Functional and taxonomic characterization of one-taxa-misplaced protein families (XLSX 34 kb)

Supplementary Table 9

Functional and taxonomic characterization of one-phyla-misplaced protein families (XLSX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiss, M., Sousa, F., Mrnjavac, N. et al. The physiology and habitat of the last universal common ancestor. Nat Microbiol 1, 16116 (2016). https://doi.org/10.1038/nmicrobiol.2016.116

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.116

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology