iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://dx.doi.org/10.1007/s00606-017-1466-z
Molecular phylogeny and genetic diversity of genus Capparis (Capparaceae) based on plastid DNA sequences and ISSR markers | Plant Systematics and Evolution Skip to main content
Log in

Molecular phylogeny and genetic diversity of genus Capparis (Capparaceae) based on plastid DNA sequences and ISSR markers

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Capparis (Capparaceae) has been used as a medicinal plant since ancient time. Capparis species were divided into Old World and New World taxa as described by the sectional division of Capparis. However, plastid DNA sequence data of Indian Capparis species were not analyzed in previous phylogenetic studies. Here, we have added Indian Capparis data in previous phylogeny and analyzed the relationship of Indian Capparis with Old World and New World taxa. The plastid phylogeny presented here includes Capparis taxa from its major distribution areas, New World and African capparoids. The presented phylogeny is used for the determination of biogeographic history of Capparis and recently segregated genera. Phylogenetic analyses of the combined plastid data revealed that the Indian Capparis are more closely related to Old World taxa and have connections with African, Australian and Eastern Asian species. Sectional classification of Old World and Indian Capparis considered in this study is reflected from the presented plastid phylogeny. The ancestral area reconstruction using Bayesian Binary Markov Chain Monte Carlo method strongly supports for the Africa as the ancestral region for both Old World and New World Capparis. Molecular marker-based genetic diversity studies on Indian Capparis are scarce. This work also includes the genetic diversity study of Indian Capparis species. Utility and efficacy of ISSR markers to study inter- and intraspecies variation in Capparis is evident from the AMOVA results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Mawgood AL, Jakse J, Al-Doss AA, Assaeed AM (2010) Genetic structure and diversity within and among six populations of Capparis decidua (Forssk.) Edgew. from Saudi Arabia. African J Biotech 9:6256–6263

    CAS  Google Scholar 

  • Abedian M, Talebi M, Golmohammdi HR, Sayed-Tabatabaei BE (2012) Genetic diversity and population structure of mahaleb cherry (Prunus mahaleb L.) and sweet cherry (Prunus avium L.) using SRAP markers. Biochem Syst Ecol 40:112–117. doi:10.1016/j.bse.2011.10.005

    Article  CAS  Google Scholar 

  • Aichi-Yousfi H, Bahri BA, Medini M, Rouz S, Rejeb MN, Ghrabi-Gammar Z (2016) Genetic diversity and population structure of six species of Capparis in Tunisia using AFLP markers. Compt Rend Biol 339:442–453. doi:10.1016/j.crvi.2016.09.001

    Article  Google Scholar 

  • Bentham G (1863) Flora australiensis: a description of the plants of the Australian territory, vol. 1. L. Reeve and co., London, pp 93–97

  • Bhoyar MS, Mishra GP, Naik PK, Murkute AA, Srivastava RB (2012) Genetic variability studies among natural populations of Capparis spinosa from cold arid desert of Trans-Himalayas using DNA markers. Natl Acad Sci Lett 35:505–515. doi:10.1007/s40009-012-0086-y

    Article  CAS  Google Scholar 

  • Candolle AP (1824) Capparis. In: Candolle AP (ed) Prodromus systematis naturalis regni vegetabilis, vol. 1. Treuttel et Würtz, Paris, pp 245–254

  • Cardinal-McTeague WM, Sytsma KJ, Hall JC (2016) Biogeography and diversification of Brassicales: a 103 million year tale. Molec Phylogen Evol 99:204–224. doi:10.1016/j.ympev.2016.02.021

    Article  Google Scholar 

  • Çelik M, Özcan T (2016) Analysis of some Capparis L. accessions from Turkey based on IRAP and seed protein pattern. Internat J Environ Agri Res 2:43–55

    Google Scholar 

  • Chahlia N (2009) Effect of Capparis decidua on hypolipidemic activity in rats. J Med Pl Res 3:481–484

    Google Scholar 

  • Cornejo X, Iltis HH (2006) New combinations in Capparaceae sensu stricto for flora of Ecuador. Harvard Pap Bot 11:17–18

    Article  Google Scholar 

  • Cornejo X, Iltis HH (2008a) New combinations in South American Capparaceae. Harvard Pap Bot 13:117–120

    Article  Google Scholar 

  • Cornejo X, Iltis HH (2008b) The reinstatement of Capparidastrum (Capparaceae). Harvard Pap Bot 13:229–236. doi:10.3100/1043-4534-13.2.229

    Article  Google Scholar 

  • Cornejo X, Iltis HH (2008c) Anisocapparis y Monilicarpa: dos nuevos géneros de Capparaceae de América del Sur. J Bot Res Inst Texas 2:61–74

    Google Scholar 

  • Cornejo X, Iltis HH (2010) Nota Científica/Short Communication: lectotypification and a new combination in Cynophalla (Capparaceae). Harvard Pap Bot 61:153–155

    Google Scholar 

  • Dewolf GP (1962) Notes on African Capparidaceae: III. Kew Bull 16:75–83

    Article  Google Scholar 

  • Don G (1831) A general history of the dichlamydeous plants, vol. 1. J.G. Rivington and F. Rivington, London, pp 278–285

  • Duman H, Canatan D, Alanoglu G, Sutc UR, Nayir T (2013) The antioxidant effects of Capparis ovata and deferasirox in patients with thalassemia major. J Blood Disorders Transfusion 4:142–145. doi:10.4172/2155-9864.1000142

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113–131. doi:10.1186/1471-2105-5-113

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall BG (2005) Comparison of the accuracies of several phylogenetic methods using protein and DNA sequences. Molec Biol Evol 22:792–802. doi:10.1093/molbev/msi066

    Article  CAS  PubMed  Google Scholar 

  • Hall JC (2008) Systematics of Capparaceae and Cleomaceae: an evaluation of the generic delimitation of Capparis and Cleome using plastid DNA sequence data. Botany 86:682–696. doi:10.1139/B08-026

    Article  CAS  Google Scholar 

  • Hall JC, Sytsma KJ, Iltis HH (2002) Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. Amer J Bot 89:1826–1842. doi:10.3732/ajb.89.11.1826

    Article  CAS  Google Scholar 

  • Hamed AR, Abdel-Shafeek KA, Abdel-Azim NS, Ismail SI, Hammouda FM (2007) Chemical investigation of some Capparis species growing in Egypt and their antioxidant activity. Evidence-based Complem Altern Med 4:25–28. doi:10.1093/ecam/nem110

    Article  Google Scholar 

  • Heywood VH (1993) Flowering plants of the world. BT Batsford Ltd., New York

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. doi:10.1093/bioinformatics/17.8.754

    Article  CAS  PubMed  Google Scholar 

  • Iltis HH, Cornejo X (2007) Studies in the Capparaceae XXX: Capparicordis, a new genus from the neotropics. Brittonia 59:245–254. doi:10.1663/0007-196X(2007)59[245:SITCXC]2.0.CO;2

  • Iltis HH, Cornejo X (2011) Two new genera and three new combinations in Neotropical Capparaceae. Harvard Pap Bot 16:65–75. doi:10.3100/025.016.0110

    Article  Google Scholar 

  • Inocencio C, Cowan RS, Alcaraz F, Rivera D, Fay MF (2005) AFLP fingerprinting in Capparis subgenus Capparis related to the commercial sources of capers. Genet Resources Crop Evol 52:137–144. doi:10.1007/s10722-003-4432-2

    Article  CAS  Google Scholar 

  • Inocencio C, Rivera D, Obón MC, Alcaraz F, Jose-Antonio B (2006) Systematic revision of Capparis section Capparis (Capparaceae). Ann Missouri Bot Gard 93:122–149. doi:10.3417/0026-6493(2006)93[122:ASROCS]2.0.CO;2

  • Jacobs M (1965) The genus Capparis (Capparaceae) from the indus to the Pacific. Blumea 12:385–541

    Google Scholar 

  • Kaul R (1963) Need for afforestation in the arid zones of India. La-Yaaran 13:30–34

    Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. doi:10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Sharma R, Kumar V, Vyas GK, Rathore A (2013) Combining molecular-marker and chemical analysis of Capparis decidua (Capparaceae) in the Thar Desert of Western Rajasthan (India). Revista Biol Trop 61:311–320

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molec Biol Evol 33:1870–1874. doi:10.1093/molbev/msw054

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Muse SV (2005) Power marker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129. doi:10.1093/bioinformatics/bti282

    Article  CAS  PubMed  Google Scholar 

  • Maiden (1904) The flora of Norfolk Island. Part I. In: Proceedings of the Linnean Society of New South Wales, vol. 28. Linnean Society of New South Wales, Sydney, pp 695–696

  • Narzary D, Mahar KS, Rana TS, Ranade S (2009) Analysis of genetic diversity among wild pomegranates in Western Himalayas, using PCR methods. Sci Hort 121:237–242. doi:10.1016/j.scienta.2009.01.035

    Article  CAS  Google Scholar 

  • Paterson A, Brubaker C, Wendel J (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Pl Molec Biol Reporter 11:122–127. doi:10.1007/BF02670470

    Article  CAS  Google Scholar 

  • Patil SM, Chandanshive VV, Tamboli AS, Adsul AA, Yadav SR, Govindwar SP (2015) Analysis of genetic variability in endemic medicinal plants of genus Chlorophytum from the Indian subcontinent using amplified fragment length polymorphism marker. Compt Rend Biol 338:838–845. doi:10.1016/j.crvi.2015.09.006

    Article  Google Scholar 

  • Pax F, Hoffmann K (1936) Capparidaceae. In: Engler A, Prantl K (eds) Die Naturlichen Pflanzenfamilien, vol. 17b. Engelmann, Leipzig, pp 146–223

  • Rohlf FJ (1998) NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.1. Exeter Software, Setauket, New York

  • Saifi N, Ibijbijen J, Echchgadda G (2011) Genetic diversity of caper plant (Capparis ssp.) from North Morocco. J Food Agric Environm 9:299–304

    CAS  Google Scholar 

  • Schlüter PM, Harris SA (2006) Analysis of multilocus fingerprinting data sets containing missing data. Molec Ecol Notes 6:569–572. doi:10.1111/j.1471-8286.2006.01225.x

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Statist 6:461–464

    Article  Google Scholar 

  • Stevens L, Salomon B, Sun G (2007) Microsatellite variability and heterozygote excess in Elymus trachycaulus populations from British Columbia in Canada. Biochem Syst Ecol 35:725–736. doi:10.1016/j.bse.2007.05.017

    Article  CAS  Google Scholar 

  • Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Associates, Sunderland, pp 407–514

    Google Scholar 

  • The Plant List (2013) The Plant List, version 1.1. Available at: http://www.theplantlist.org. Accessed 10 May 2017

  • Thompson JD, Plewniak F, Poch O (1999) A comprehensive comparison of multiple sequence alignment programs. Nucl Acids Res 27:2682–2690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tropicos.org (2015) Tropicos. Missouri Botanical Garden, Saint Louis. Available at: http://www.tropicos.org. Accessed 10 May 2017

  • Vyas GK, Sharma R, Kumar V, Sharma TB, Khandelwal V (2009) Diversity analysis of Capparis decidua (Forssk.) Edgew. using biochemical and molecular parameters. Genet Resources Crop Evol 56:905–911. doi:10.1007/s10722-009-9488-1

    Article  CAS  Google Scholar 

  • Willis JC (1988) A dictionary of the flowering plants and ferns, 8th edn. Cambridge University Press, Cambridge

  • Woodville W (1794) Medical Botany. James Phillips, London

  • Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1999) POPGENE 3.2, user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Center, University of Alberta, Edmonton

  • Yu Y, Harris AJ, Blair C, He X (2015) RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Molec Phylogen Evol 87:46–49. doi:10.1016/j.ympev.2015.03.008

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Avinash Gholave, Pragati Thonge, Rohit Mane and Ganesh Pawar from Department of Botany, Shivaji University for assistance in field collections. We also thank to Dr. Manoj Lekhak (Department of Botany, Shivaji University, Kolhapur) for his help in field collection as well as in identification of some Capparis species. Authors are thankful to the Department of Biotechnology, New Delhi, India, for funding under Interdisciplinary Program of Life Sciences for advanced Research and Education (IPLS) (Grant No. BT/PR4572/INF/22/147/2012) to Shivaji University, Kolhapur, India. S.P. Govindwar would like to thank The Korean Federation of Science and Technology Societies, South Korea, for providing Brain Pool Fellowship (Grant Number 172S-5-3-1917).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay P. Govindwar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Eric Schranz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

GenBank accession numbers of rbcL and matK sequences for Capparis species included in phylogenetic analyses with their respective section and justification related to sections assignments for Capparis species (PDF 203 kb)

Online Resource 2

Maximum parsimony and Bayesian phylogenetic analysis based on combined data, and Maximum likelihood analysis based on individual regions rbcL and matK (PDF 1216 kb)

Online Resource 3

Distribution codes for Capparis species used in biogeographic analysis and RASP program output for BBM analysis for important nodes discussed in this study (PDF 112 kb)

Online Resource 4

ISSR profiling images for Indian Capparis (PDF 619 kb)

Online Resource 5

The alignment matrix of the combined (rbcL+matK) data (FAS 74 kb)

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. GenBank accession numbers of rbcL and matK sequences for Capparis species included in phylogenetic analyses with their respective section and justification related to sections assignments for Capparis species.

Online Resource 2. Maximum parsimony and Bayesian phylogenetic analysis based on combined data, and Maximum likelihood analysis based on individual regions rbcL and matK.

Online Resource 3. Distribution codes for Capparis species used in biogeographic analysis and RASP program output for BBM analysis for important nodes discussed in this study.

Online Resource 4. ISSR profiling images for Indian Capparis.

Online Resource 5. The alignment matrix of the combined (rbcL+matK) data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamboli, A.S., Yadav, P.B., Gothe, A.A. et al. Molecular phylogeny and genetic diversity of genus Capparis (Capparaceae) based on plastid DNA sequences and ISSR markers. Plant Syst Evol 304, 205–217 (2018). https://doi.org/10.1007/s00606-017-1466-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-017-1466-z

Keywords

Navigation