Abstract
Giant planets are tens to thousands of times as massive as the Earth and many times as large. Most of their volumes are occupied by hydrogen and helium, the primary constituents of the protostellar disks from which they formed. Significantly, the solar system giants are also highly enriched in heavier elements relative to the Sun, indicating that solid material participated in their assembly. Giant planets account for most of the mass of our planetary system and of those extrasolar planetary systems in which they are present. Therefore, giant planets are primary actors in determining the orbital architectures of planetary systems and, possibly, in affecting the composition of terrestrial planets. This chapter describes the principal route that, according to current knowledge, can lead to the formation of giant planets, the core nucleated accretion model, and an alternative route, the disk instability model, which may lead to the formation of planetary-mass objects on wide orbits.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adachi I, Hayashi C, Nakazawa K (1976) The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Prog Theor Phys 56:1756–1771
Alibert Y (2017) Maximum mass of planetary embryos that formed in core-accretion models. Astron Astrophys 606:A69
Alibert Y, Mordasini C, Benz W (2004) Migration and giant planet formation. Astron Astrophys 417:L25–L28
Atreya et al (2018) The origin and evolution of Saturn, with exoplanet perspective. In: Saturn in the 21st century. Cambridge University Press. https://www.cambridge.org/core/books/saturn-in-the-21st-century/23F180882F694780225FEDEDF892763E
Baraffe I, Chabrier G, Fortney J, Sotin C (2014) Planetary internal structures. In: Beuther H, Klessen RS, Dullemond CP, Henning T (eds) Protostars and planets VI. University of Arizona Press, Tucson, pp 763–786
Baruteau C, Meru F, Paardekooper SJ (2011) Rapid inward migration of planets formed by gravitational instability. Mon Not R Astron Soc 416:1971–1982
Bell CPM, Naylor T, Mayne NJ, Jeffries RD, Littlefair SP (2013) Pre-main-sequence isochrones – II. Revising star and planet formation time-scales. Mon Not R Astron Soc 434:806–831
Benvenuto OG, Fortier A, Brunini A (2009) Forming Jupiter, Saturn, Uranus and Neptune in few million years by core accretion. Icarus 204:752–755
Binney J, Tremaine S (1987) Galactic dynamics. Princeton University Press, Princeton
Bodenheimer P, D’Angelo G, Lissauer JJ, Fortney JJ, Saumon D (2013) Deuterium burning in massive giant planets and low-mass brown dwarfs formed by core-nucleated accretion. Astrophys J 770:120
Bolton SJ, Lunine J, Stevenson D et al (2017) The Juno Mission. Space Sci Rev 213:5–37
Boss AP (1997) Giant planet formation by gravitational instability. Science 276:1836–1839
Bowler BP (2016) Imaging extrasolar giant planets. PASP 128(10):102001
Brouwers et al (2018) A&A 611. Id. A65, 12 pp. https://doi.org/10.1051/0004-6361/201731824
Bryden G, Chen X, Lin DNC, Nelson RP, Papaloizou JCB (1999) Tidally induced gap formation in protostellar disks: gap clearing and suppression of protoplanetary growth. Astrophys J 514:344–367
Cameron AGW, Decampli WM, Bodenheimer P (1982) Evolution of giant gaseous protoplanets embedded in the primitive solar nebula. Icarus 49:298–312
Chiang E, Youdin AN (2010) Forming planetesimals in solar and extrasolar nebulae. Annu Rev Earth Planet Sci 38:493–522
Coradini A, Magni G, Federico C (1981) Formation of planetesimals in an evolving protoplanetary disk. Astron Astrophys 98:173–185
D’Angelo G, Bodenheimer P (2013) Three-dimensional radiation-hydrodynamics calculations of the envelopes of young planets embedded in protoplanetary disks. Astrophys J 778:77
D’Angelo G, Bodenheimer P (2016) In situ and ex situ formation models of Kepler 11 planets. Astrophys J 828:33
D’Angelo G, Lubow SH (2008) Evolution of migrating planets undergoing gas accretion. Astrophys J 685:560–583
D’Angelo G, Podolak M (2015) Capture and evolution of planetesimals in circumjovian disks. Astrophys J 806:203
D’Angelo G, Weidenschilling SJ, Lissauer JJ, Bodenheimer P (2014) Growth of Jupiter: enhancement of core accretion by a voluminous low-mass envelope. Icarus 241:298–312
Dittkrist KM, Mordasini C, Klahr H, Alibert Y, Henning T (2014) Impacts of planet migration models on planetary populations. Effects of saturation, cooling and stellar irradiation. Astron Astrophys 567:A121
Durisen (2011) Disk hydrodynamics. In: Physical processes in circumstellar disks around young stars. University of Chicago Press. http://press.uchicago.edu/ucp/books/book/chicago/P/bo11105735.html
Durisen RH, Boss AP, Mayer L et al (2007) Gravitational instabilities in gaseous protoplanetary disks and implications for giant planet formation. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 607–622
Ehrenreich D, Désert JM (2011) Mass-loss rates for transiting exoplanets. Astron Astrophys 529:A136
Ercolano B, Pascucci I (2017) The dispersal of planet-forming discs: theory confronts observations. R Soc Open Sci 4:170114
Forgan D, Rice K (2013) Towards a population synthesis model of objects formed by self-gravitating disc fragmentation and tidal downsizing. Mon Not R Astron Soc 432:3168–3185
Forgan D, Price DJ, Bonnell I (2017) On the fragmentation boundary in magnetized self-gravitating discs. Mon Not R Astron Soc 466:3406–3416
Fortney JJ, Nettelmann N (2010) The interior structure, composition, and evolution of giant planets. Space Sci Rev 152:423–447
Fortney JJ, Marley MS, Barnes JW (2007) Planetary radii across five orders of magnitude in mass and stellar insolation: application to transits. Astrophys J 659:1661–1672
Fouchet T, Moses JI, Conrath BJ (2009) Saturn: composition and chemistry. In: Dougherty MK, Esposito LW, Krimigis SM (eds) Saturn from Cassini–Huygens. Springer, Berlin, p 83. https://doi.org/10.1007/978-1-4020-9217-6_5
Gammie CF (2001) Nonlinear outcome of gravitational instability in cooling, gaseous disks. Astrophys J 553:174–183
Ginzburg S, Inamdar NK, Schlichting HE (2017) Super-Earths: atmospheric accretion, thermal evolution and envelope loss. In: Pessah M, Gressel O (eds) Astrophysics and space science library, vol 445. Springer, Cham, p 295. https://doi.org/10.1007/978-3-319-60609-5_10
Goldreich P, Tremaine S (1980) Disk–satellite interactions. Astrophys J 241:425–441
Gorti U, Liseau R, Sándor Z, Clarke C (2016) Disk dispersal: theoretical understanding and observational constraints. Space Sci Rev 205:125–152
Greenzweig Y, Lissauer JJ (1992) Accretion rates of protoplanets. II – Gaussian distributions of planetesimal velocities. Icarus 100:440–463
Hasegawa Y, Pudritz RE (2012) Evolutionary tracks of trapped, accreting protoplanets: the origin of the observed mass–period relation. Astrophys J 760:117
Hasegawa Y, Pudritz RE (2013) Planetary populations in the mass–period diagram: a statistical treatment of exoplanet formation and the role of planet traps. Astrophys J 778:78
Hellary P, Nelson RP (2012) Global models of planetary system formation in radiatively-inefficient protoplanetary discs. Mon Not R Astron Soc 419:2737–2757
Helled R, Bodenheimer P, Podolak M et al (2014) Giant planet formation, evolution, and internal structure. In: Beuther H et al (eds) Protostars Planets VI. University of Arizona Press, Tucson, pp 643–665
Hersant F, Gautier D, Tobie G, Lunine JI (2008) Interpretation of the carbon abundance in Saturn measured by Cassini. Planet Space Sci 56:1103–1111
Hillenbrand LA (2008) Disk-dispersal and planet-formation timescales. Phys Scr T130(1):014024
Hubbard WB, Dougherty MK, Gautier D, Jacobson R (2009) The interior of Saturn. In: Dougherty MK, Esposito LW, Krimigis SM (eds) Saturn from Cassini–Huygens. Springer, Berlin, p 75. https://doi.org/10.1007/978-1-4020-9217-6
Hubickyj O, Bodenheimer P, Lissauer JJ (2005) Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core. Icarus 179:415–431
Ida S, Lin DNC (2004) Toward a deterministic model of planetary formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets. Astrophys J 604:388–413
Ikoma M, Nakazawa K, Emori H (2000) Formation of giant planets: dependences on core accretion rate and grain opacity. Astrophys J 537:1013–1025
Jordán A, Brahm R, Bakos GÁ et al (2014) HATS-4b: a dense hot Jupiter transiting a super metal-rich G star. Astron J 148:29
Kary DM, Lissauer JJ, Greenzweig Y (1993) Nebular gas drag and planetary accretion. Icarus 106:288
Kippenhahn R, Weigert A, Weiss A (2013) Stellar structure and evolution, Astronomy and astrophysics library. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-642-30304-3. ISBN: 978-3-642-30255-8
Kley W (1999) Mass flow and accretion through gaps in accretion discs. Mon Not R Astron Soc 303:696–710
Kley W, D’Angelo G, Henning T (2001) Three-dimensional simulations of a planet embedded in a protoplanetary disk. Astrophys J 547:457–464
Kratter K, Lodato G (2016) Gravitational instabilities in circumstellar disks. Annu Rev Astron Astrophys 54:271–311
Kuiper GP (1951) On the origin of the solar system. Proc Natl Acad Sci 37:1–14
Lambrechts M, Johansen A (2012) Rapid growth of gas-giant cores by pebble accretion. Astron Astrophys 544:A32
Lambrechts M, Johansen A, Morbidelli A (2014) Separating gas-giant and ice-giant planets by halting pebble accretion. Astron Astrophys 572:A35
Lin DNC, Papaloizou J (1986) On the tidal interaction between protoplanets and the protoplanetary disk. III – orbital migration of protoplanets. Astrophys J 309:846–857
Lissauer JJ (1987) Timescales for planetary accretion and the structure of the protoplanetary disk. Icarus 69:249–265
Lissauer JJ (1993) Planet formation. Annu Rev Astron Astrophys 31:129–174
Lissauer JJ, Hubickyj O, D’Angelo G, Bodenheimer P (2009) Models of Jupiter’s growth incorporating thermal and hydrodynamic constraints. Icarus 199:338–350
Lubow SH, D’Angelo G (2006) Gas flow across gaps in protoplanetary disks. Astrophys J 641:526–533
Lubow SH, Seibert M, Artymowicz P (1999) Disk accretion onto high-mass planets. Astrophys J 526:1001–1012
Lynden-Bell D, Pringle JE (1974) The evolution of viscous discs and the origin of the nebular variables. Mon Not R Astron Soc 168:603–637
Maire AL, Skemer AJ, Hinz PM et al (2015) The LEECH Exoplanet Imaging Survey. Further constraints on the planet architecture of the HR 8799 system. Astron Astrophys 576:A133
Marois C, Macintosh B, Barman T et al (2008) Direct imaging of multiple planets orbiting the star HR 8799. Science 322:1348
Marois C, Zuckerman B, Konopacky QM, Macintosh B, Barman T (2010) Images of a fourth planet orbiting HR 8799. Nature 468:1080–1083
Mihalas D, Mihalas BW (1999) Foundations of radiation hydrodynamics. Dover, New York
Militzer B, Hubbard WB, Vorberger J, Tamblyn I, Bonev SA (2008) A massive core in Jupiter predicted from first-principles simulations. Astrophys J 688:L45–L48
Miller N, Fortney JJ (2011) The heavy-element masses of extrasolar giant planets, revealed. Astrophys J 736:L29
Morbidelli A, Nesvorny D (2012) Dynamics of pebbles in the vicinity of a growing planetary embryo: hydro-dynamical simulations. Astron Astrophys 546:A18
Mordasini C, Mollière P, Dittkrist KM, Jin S, Alibert Y (2015) Global models of planet formation and evolution. Int J Astrobiol 14:201–232
Movshovitz N, Bodenheimer P, Podolak M, Lissauer JJ (2010) Formation of Jupiter using opacities based on detailed grain physics. Icarus 209:616–624
Murray CD, Dermott SF (1999) Solar system dynamics. Cambridge University Press, Cambridge, UK
Nettelmann N, Becker A, Holst B, Redmer R (2012) Jupiter models with improved ab initio hydrogen equation of state (H-REOS.2). Astrophys J 750:52
Ormel CW, Klahr HH (2010) The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astron Astrophys 520:A43
Peale S (2007) 10.14 – The origin of the natural satellites. In: Schubert G (ed) Treatise on geophysics. Elsevier, Amsterdam, pp 465–508. https://doi.org/10.1016/B978-044452748-6.00167-X. https://www.sciencedirect.com/science/article/pii/B978044452748600167X
Piso AMA, Youdin AN, Murray-Clay RA (2015) Minimum core masses for giant planet formation with realistic equations of state and opacities. Astrophys J 800:82
Pollack JB, Hubickyj O, Bodenheimer P et al (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124:62–85
Pringle JE (1981) Accretion discs in astrophysics. Annu Rev Astron Astrophys 19:137–162
Rafikov RR (2005) Can giant planets form by direct gravitational instability? Astrophys J 621:L69–L72
Rice WKM, Armitage PJ, Bate MR, Bonnell IA (2003) The effect of cooling on the global stability of self-gravitating protoplanetary discs. Mon Not R Astron Soc 339:1025–1030
Roberge A, Kamp I (2010) Protoplanetary and Debris Disks. In: Seager S (ed) Exoplanets. University of Arizona Press, Tucson, p 526. ISBN: 978-0-8165-2945-2, pp 269–295
Rogers PD, Wadsley J (2011) The importance of photosphere cooling in simulations of gravitational instability in the inner regions of protostellar discs. Mon Not R Astron Soc 414:913–929
Safronov VS (1960) On the gravitational instability in flattened systems with axial symmetry and non-uniform rotation. Annales d’Astrophysique 23:979
Salz M, Czesla S, Schneider PC, Schmitt JHMM (2016) Simulating the escaping atmospheres of hot gas planets in the solar neighborhood. Astron Astrophys 586:A75
Santos NC, Adibekyan V, Figueira P et al (2017) Observational evidence for two distinct giant planet populations. Astron Astrophys 603:A30
Sato B, Fischer DA, Henry GW et al (2005) The N2K consortium. II. A transiting hot Saturn around HD 149026 with a large dense core. Astrophys J 633:465–473
Saumon D, Guillot T (2004) Shock compression of deuterium and the interiors of Jupiter and Saturn. Astrophys J 609:1170–1180
Seager S, Kuchner M, Hier-Majumder CA, Militzer B (2007) Mass–radius relationships for solid exoplanets. Astrophys J 669:1279–1297
Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. Astron Astrophys 24:337–355
Stamatellos D (2015) The migration of gas giant planets in gravitationally unstable disks. Astrophys J 810:L11
Stevenson DJ (1982) Formation of the giant planets. Planet Space Sci 30:755–764
Toomre A (1964) On the gravitational stability of a disk of stars. Astrophys J 139:1217–1238
Wahl SM, Hubbard WB, Militzer B et al (2017) Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core. Geophys Res Lett 44:4649–4659
Walmswell J, Clarke C, Cossins P (2013) The evolution of planetesimal swarms in self-gravitating protoplanetary discs. Mon Not R Astron Soc 431:1903–1913
Weidenschilling SJ, Davis DR (1985) Orbital resonances in the solar nebula – implications for planetary accretion. Icarus 62:16–29
Weiss A, Hillebrandt W, Thomas HC, Ritter H (2006) Cox and Giuli’s principles of stellar structure. Cambridge Scientific Publishers Ltd, Cambridge, UK
Wetherill GW, Stewart GR (1989) Accumulation of a swarm of small planetesimals. Icarus 77:330–357
Wong MH, Mahaffy PR, Atreya SK, Niemann HB, Owen TC (2004) Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter. Icarus 171:153–170
Wuchterl G (1993) The critical mass for protoplanets revisited – massive envelopes through convection. Icarus 106:323–334
Young MD, Clarke CJ (2015) Dependence of fragmentation in self-gravitating accretion discs on small-scale structure. Mon Not R Astron Soc 451:3987–3994
Acknowledgments
This work benefitted greatly from discussions with Peter Bodenheimer. The authors acknowledge support from NASA’s Research Opportunities in Space and Earth Science (ROSES), and in particular from the Emerging Worlds Program. Resources supporting the work shown in Figs. 1 through 6 were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this entry
Cite this entry
D’Angelo, G., Lissauer, J.J. (2018). Formation of Giant Planets. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-55333-7_140
Download citation
DOI: https://doi.org/10.1007/978-3-319-55333-7_140
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55332-0
Online ISBN: 978-3-319-55333-7
eBook Packages: Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics