iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://dx.doi.org/10.1007/978-3-319-55333-7_140
Formation of Giant Planets | SpringerLink
Skip to main content

Formation of Giant Planets

  • Reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

Giant planets are tens to thousands of times as massive as the Earth and many times as large. Most of their volumes are occupied by hydrogen and helium, the primary constituents of the protostellar disks from which they formed. Significantly, the solar system giants are also highly enriched in heavier elements relative to the Sun, indicating that solid material participated in their assembly. Giant planets account for most of the mass of our planetary system and of those extrasolar planetary systems in which they are present. Therefore, giant planets are primary actors in determining the orbital architectures of planetary systems and, possibly, in affecting the composition of terrestrial planets. This chapter describes the principal route that, according to current knowledge, can lead to the formation of giant planets, the core nucleated accretion model, and an alternative route, the disk instability model, which may lead to the formation of planetary-mass objects on wide orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adachi I, Hayashi C, Nakazawa K (1976) The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Prog Theor Phys 56:1756–1771

    Article  ADS  Google Scholar 

  • Alibert Y (2017) Maximum mass of planetary embryos that formed in core-accretion models. Astron Astrophys 606:A69

    Article  ADS  Google Scholar 

  • Alibert Y, Mordasini C, Benz W (2004) Migration and giant planet formation. Astron Astrophys 417:L25–L28

    Article  ADS  Google Scholar 

  • Atreya et al (2018) The origin and evolution of Saturn, with exoplanet perspective. In: Saturn in the 21st century. Cambridge University Press. https://www.cambridge.org/core/books/saturn-in-the-21st-century/23F180882F694780225FEDEDF892763E

  • Baraffe I, Chabrier G, Fortney J, Sotin C (2014) Planetary internal structures. In: Beuther H, Klessen RS, Dullemond CP, Henning T (eds) Protostars and planets VI. University of Arizona Press, Tucson, pp 763–786

    Google Scholar 

  • Baruteau C, Meru F, Paardekooper SJ (2011) Rapid inward migration of planets formed by gravitational instability. Mon Not R Astron Soc 416:1971–1982

    Article  ADS  Google Scholar 

  • Bell CPM, Naylor T, Mayne NJ, Jeffries RD, Littlefair SP (2013) Pre-main-sequence isochrones – II. Revising star and planet formation time-scales. Mon Not R Astron Soc 434:806–831

    Article  ADS  Google Scholar 

  • Benvenuto OG, Fortier A, Brunini A (2009) Forming Jupiter, Saturn, Uranus and Neptune in few million years by core accretion. Icarus 204:752–755

    Article  ADS  Google Scholar 

  • Binney J, Tremaine S (1987) Galactic dynamics. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Bodenheimer P, D’Angelo G, Lissauer JJ, Fortney JJ, Saumon D (2013) Deuterium burning in massive giant planets and low-mass brown dwarfs formed by core-nucleated accretion. Astrophys J 770:120

    Article  ADS  Google Scholar 

  • Bolton SJ, Lunine J, Stevenson D et al (2017) The Juno Mission. Space Sci Rev 213:5–37

    Article  ADS  Google Scholar 

  • Boss AP (1997) Giant planet formation by gravitational instability. Science 276:1836–1839

    Article  ADS  Google Scholar 

  • Bowler BP (2016) Imaging extrasolar giant planets. PASP 128(10):102001

    Article  ADS  Google Scholar 

  • Brouwers et al (2018) A&A 611. Id. A65, 12 pp. https://doi.org/10.1051/0004-6361/201731824

    Article  ADS  Google Scholar 

  • Bryden G, Chen X, Lin DNC, Nelson RP, Papaloizou JCB (1999) Tidally induced gap formation in protostellar disks: gap clearing and suppression of protoplanetary growth. Astrophys J 514:344–367

    Article  ADS  Google Scholar 

  • Cameron AGW, Decampli WM, Bodenheimer P (1982) Evolution of giant gaseous protoplanets embedded in the primitive solar nebula. Icarus 49:298–312

    Article  ADS  Google Scholar 

  • Chiang E, Youdin AN (2010) Forming planetesimals in solar and extrasolar nebulae. Annu Rev Earth Planet Sci 38:493–522

    Article  ADS  Google Scholar 

  • Coradini A, Magni G, Federico C (1981) Formation of planetesimals in an evolving protoplanetary disk. Astron Astrophys 98:173–185

    ADS  MATH  Google Scholar 

  • D’Angelo G, Bodenheimer P (2013) Three-dimensional radiation-hydrodynamics calculations of the envelopes of young planets embedded in protoplanetary disks. Astrophys J 778:77

    Article  ADS  Google Scholar 

  • D’Angelo G, Bodenheimer P (2016) In situ and ex situ formation models of Kepler 11 planets. Astrophys J 828:33

    Article  ADS  Google Scholar 

  • D’Angelo G, Lubow SH (2008) Evolution of migrating planets undergoing gas accretion. Astrophys J 685:560–583

    Article  ADS  Google Scholar 

  • D’Angelo G, Podolak M (2015) Capture and evolution of planetesimals in circumjovian disks. Astrophys J 806:203

    Article  ADS  Google Scholar 

  • D’Angelo G, Weidenschilling SJ, Lissauer JJ, Bodenheimer P (2014) Growth of Jupiter: enhancement of core accretion by a voluminous low-mass envelope. Icarus 241:298–312

    Article  ADS  Google Scholar 

  • Dittkrist KM, Mordasini C, Klahr H, Alibert Y, Henning T (2014) Impacts of planet migration models on planetary populations. Effects of saturation, cooling and stellar irradiation. Astron Astrophys 567:A121

    Article  Google Scholar 

  • Durisen (2011) Disk hydrodynamics. In: Physical processes in circumstellar disks around young stars. University of Chicago Press. http://press.uchicago.edu/ucp/books/book/chicago/P/bo11105735.html

  • Durisen RH, Boss AP, Mayer L et al (2007) Gravitational instabilities in gaseous protoplanetary disks and implications for giant planet formation. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 607–622

    Google Scholar 

  • Ehrenreich D, Désert JM (2011) Mass-loss rates for transiting exoplanets. Astron Astrophys 529:A136

    Article  ADS  Google Scholar 

  • Ercolano B, Pascucci I (2017) The dispersal of planet-forming discs: theory confronts observations. R Soc Open Sci 4:170114

    Article  MathSciNet  Google Scholar 

  • Forgan D, Rice K (2013) Towards a population synthesis model of objects formed by self-gravitating disc fragmentation and tidal downsizing. Mon Not R Astron Soc 432:3168–3185

    Article  ADS  Google Scholar 

  • Forgan D, Price DJ, Bonnell I (2017) On the fragmentation boundary in magnetized self-gravitating discs. Mon Not R Astron Soc 466:3406–3416

    Article  ADS  Google Scholar 

  • Fortney JJ, Nettelmann N (2010) The interior structure, composition, and evolution of giant planets. Space Sci Rev 152:423–447

    Article  ADS  Google Scholar 

  • Fortney JJ, Marley MS, Barnes JW (2007) Planetary radii across five orders of magnitude in mass and stellar insolation: application to transits. Astrophys J 659:1661–1672

    Article  ADS  Google Scholar 

  • Fouchet T, Moses JI, Conrath BJ (2009) Saturn: composition and chemistry. In: Dougherty MK, Esposito LW, Krimigis SM (eds) Saturn from Cassini–Huygens. Springer, Berlin, p 83. https://doi.org/10.1007/978-1-4020-9217-6_5

    Chapter  Google Scholar 

  • Gammie CF (2001) Nonlinear outcome of gravitational instability in cooling, gaseous disks. Astrophys J 553:174–183

    Article  ADS  Google Scholar 

  • Ginzburg S, Inamdar NK, Schlichting HE (2017) Super-Earths: atmospheric accretion, thermal evolution and envelope loss. In: Pessah M, Gressel O (eds) Astrophysics and space science library, vol 445. Springer, Cham, p 295. https://doi.org/10.1007/978-3-319-60609-5_10

    Chapter  Google Scholar 

  • Goldreich P, Tremaine S (1980) Disk–satellite interactions. Astrophys J 241:425–441

    Article  ADS  MathSciNet  Google Scholar 

  • Gorti U, Liseau R, Sándor Z, Clarke C (2016) Disk dispersal: theoretical understanding and observational constraints. Space Sci Rev 205:125–152

    Article  ADS  Google Scholar 

  • Greenzweig Y, Lissauer JJ (1992) Accretion rates of protoplanets. II – Gaussian distributions of planetesimal velocities. Icarus 100:440–463

    Article  ADS  Google Scholar 

  • Hasegawa Y, Pudritz RE (2012) Evolutionary tracks of trapped, accreting protoplanets: the origin of the observed mass–period relation. Astrophys J 760:117

    Article  ADS  Google Scholar 

  • Hasegawa Y, Pudritz RE (2013) Planetary populations in the mass–period diagram: a statistical treatment of exoplanet formation and the role of planet traps. Astrophys J 778:78

    Article  ADS  Google Scholar 

  • Hellary P, Nelson RP (2012) Global models of planetary system formation in radiatively-inefficient protoplanetary discs. Mon Not R Astron Soc 419:2737–2757

    Article  ADS  Google Scholar 

  • Helled R, Bodenheimer P, Podolak M et al (2014) Giant planet formation, evolution, and internal structure. In: Beuther H et al (eds) Protostars Planets VI. University of Arizona Press, Tucson, pp 643–665

    Google Scholar 

  • Hersant F, Gautier D, Tobie G, Lunine JI (2008) Interpretation of the carbon abundance in Saturn measured by Cassini. Planet Space Sci 56:1103–1111

    Article  ADS  Google Scholar 

  • Hillenbrand LA (2008) Disk-dispersal and planet-formation timescales. Phys Scr T130(1):014024

    Article  ADS  Google Scholar 

  • Hubbard WB, Dougherty MK, Gautier D, Jacobson R (2009) The interior of Saturn. In: Dougherty MK, Esposito LW, Krimigis SM (eds) Saturn from Cassini–Huygens. Springer, Berlin, p 75. https://doi.org/10.1007/978-1-4020-9217-6

    Chapter  Google Scholar 

  • Hubickyj O, Bodenheimer P, Lissauer JJ (2005) Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core. Icarus 179:415–431

    Article  ADS  Google Scholar 

  • Ida S, Lin DNC (2004) Toward a deterministic model of planetary formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets. Astrophys J 604:388–413

    Article  ADS  Google Scholar 

  • Ikoma M, Nakazawa K, Emori H (2000) Formation of giant planets: dependences on core accretion rate and grain opacity. Astrophys J 537:1013–1025

    Article  ADS  Google Scholar 

  • Jordán A, Brahm R, Bakos GÁ et al (2014) HATS-4b: a dense hot Jupiter transiting a super metal-rich G star. Astron J 148:29

    Article  ADS  Google Scholar 

  • Kary DM, Lissauer JJ, Greenzweig Y (1993) Nebular gas drag and planetary accretion. Icarus 106:288

    Article  ADS  Google Scholar 

  • Kippenhahn R, Weigert A, Weiss A (2013) Stellar structure and evolution, Astronomy and astrophysics library. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-642-30304-3. ISBN: 978-3-642-30255-8

    Book  MATH  Google Scholar 

  • Kley W (1999) Mass flow and accretion through gaps in accretion discs. Mon Not R Astron Soc 303:696–710

    Article  ADS  Google Scholar 

  • Kley W, D’Angelo G, Henning T (2001) Three-dimensional simulations of a planet embedded in a protoplanetary disk. Astrophys J 547:457–464

    Article  ADS  Google Scholar 

  • Kratter K, Lodato G (2016) Gravitational instabilities in circumstellar disks. Annu Rev Astron Astrophys 54:271–311

    Article  ADS  Google Scholar 

  • Kuiper GP (1951) On the origin of the solar system. Proc Natl Acad Sci 37:1–14

    Article  ADS  Google Scholar 

  • Lambrechts M, Johansen A (2012) Rapid growth of gas-giant cores by pebble accretion. Astron Astrophys 544:A32

    Article  ADS  Google Scholar 

  • Lambrechts M, Johansen A, Morbidelli A (2014) Separating gas-giant and ice-giant planets by halting pebble accretion. Astron Astrophys 572:A35

    Article  ADS  Google Scholar 

  • Lin DNC, Papaloizou J (1986) On the tidal interaction between protoplanets and the protoplanetary disk. III – orbital migration of protoplanets. Astrophys J 309:846–857

    Article  ADS  Google Scholar 

  • Lissauer JJ (1987) Timescales for planetary accretion and the structure of the protoplanetary disk. Icarus 69:249–265

    Article  ADS  Google Scholar 

  • Lissauer JJ (1993) Planet formation. Annu Rev Astron Astrophys 31:129–174

    Article  ADS  Google Scholar 

  • Lissauer JJ, Hubickyj O, D’Angelo G, Bodenheimer P (2009) Models of Jupiter’s growth incorporating thermal and hydrodynamic constraints. Icarus 199:338–350

    Article  ADS  Google Scholar 

  • Lubow SH, D’Angelo G (2006) Gas flow across gaps in protoplanetary disks. Astrophys J 641:526–533

    Article  ADS  Google Scholar 

  • Lubow SH, Seibert M, Artymowicz P (1999) Disk accretion onto high-mass planets. Astrophys J 526:1001–1012

    Article  ADS  Google Scholar 

  • Lynden-Bell D, Pringle JE (1974) The evolution of viscous discs and the origin of the nebular variables. Mon Not R Astron Soc 168:603–637

    Article  ADS  Google Scholar 

  • Maire AL, Skemer AJ, Hinz PM et al (2015) The LEECH Exoplanet Imaging Survey. Further constraints on the planet architecture of the HR 8799 system. Astron Astrophys 576:A133

    Article  Google Scholar 

  • Marois C, Macintosh B, Barman T et al (2008) Direct imaging of multiple planets orbiting the star HR 8799. Science 322:1348

    Article  ADS  Google Scholar 

  • Marois C, Zuckerman B, Konopacky QM, Macintosh B, Barman T (2010) Images of a fourth planet orbiting HR 8799. Nature 468:1080–1083

    Article  ADS  Google Scholar 

  • Mihalas D, Mihalas BW (1999) Foundations of radiation hydrodynamics. Dover, New York

    MATH  Google Scholar 

  • Militzer B, Hubbard WB, Vorberger J, Tamblyn I, Bonev SA (2008) A massive core in Jupiter predicted from first-principles simulations. Astrophys J 688:L45–L48

    Article  ADS  Google Scholar 

  • Miller N, Fortney JJ (2011) The heavy-element masses of extrasolar giant planets, revealed. Astrophys J 736:L29

    Article  ADS  Google Scholar 

  • Morbidelli A, Nesvorny D (2012) Dynamics of pebbles in the vicinity of a growing planetary embryo: hydro-dynamical simulations. Astron Astrophys 546:A18

    Article  ADS  Google Scholar 

  • Mordasini C, Mollière P, Dittkrist KM, Jin S, Alibert Y (2015) Global models of planet formation and evolution. Int J Astrobiol 14:201–232

    Article  Google Scholar 

  • Movshovitz N, Bodenheimer P, Podolak M, Lissauer JJ (2010) Formation of Jupiter using opacities based on detailed grain physics. Icarus 209:616–624

    Article  ADS  Google Scholar 

  • Murray CD, Dermott SF (1999) Solar system dynamics. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  • Nettelmann N, Becker A, Holst B, Redmer R (2012) Jupiter models with improved ab initio hydrogen equation of state (H-REOS.2). Astrophys J 750:52

    Article  ADS  Google Scholar 

  • Ormel CW, Klahr HH (2010) The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astron Astrophys 520:A43

    Article  ADS  Google Scholar 

  • Peale S (2007) 10.14 – The origin of the natural satellites. In: Schubert G (ed) Treatise on geophysics. Elsevier, Amsterdam, pp 465–508. https://doi.org/10.1016/B978-044452748-6.00167-X. https://www.sciencedirect.com/science/article/pii/B978044452748600167X

    Chapter  Google Scholar 

  • Piso AMA, Youdin AN, Murray-Clay RA (2015) Minimum core masses for giant planet formation with realistic equations of state and opacities. Astrophys J 800:82

    Article  ADS  Google Scholar 

  • Pollack JB, Hubickyj O, Bodenheimer P et al (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124:62–85

    Article  ADS  Google Scholar 

  • Pringle JE (1981) Accretion discs in astrophysics. Annu Rev Astron Astrophys 19:137–162

    Article  ADS  Google Scholar 

  • Rafikov RR (2005) Can giant planets form by direct gravitational instability? Astrophys J 621:L69–L72

    Article  ADS  Google Scholar 

  • Rice WKM, Armitage PJ, Bate MR, Bonnell IA (2003) The effect of cooling on the global stability of self-gravitating protoplanetary discs. Mon Not R Astron Soc 339:1025–1030

    Article  ADS  Google Scholar 

  • Roberge A, Kamp I (2010) Protoplanetary and Debris Disks. In: Seager S (ed) Exoplanets. University of Arizona Press, Tucson, p 526. ISBN: 978-0-8165-2945-2, pp 269–295

    Google Scholar 

  • Rogers PD, Wadsley J (2011) The importance of photosphere cooling in simulations of gravitational instability in the inner regions of protostellar discs. Mon Not R Astron Soc 414:913–929

    Article  ADS  Google Scholar 

  • Safronov VS (1960) On the gravitational instability in flattened systems with axial symmetry and non-uniform rotation. Annales d’Astrophysique 23:979

    ADS  Google Scholar 

  • Salz M, Czesla S, Schneider PC, Schmitt JHMM (2016) Simulating the escaping atmospheres of hot gas planets in the solar neighborhood. Astron Astrophys 586:A75

    Article  ADS  Google Scholar 

  • Santos NC, Adibekyan V, Figueira P et al (2017) Observational evidence for two distinct giant planet populations. Astron Astrophys 603:A30

    Article  Google Scholar 

  • Sato B, Fischer DA, Henry GW et al (2005) The N2K consortium. II. A transiting hot Saturn around HD 149026 with a large dense core. Astrophys J 633:465–473

    Article  ADS  Google Scholar 

  • Saumon D, Guillot T (2004) Shock compression of deuterium and the interiors of Jupiter and Saturn. Astrophys J 609:1170–1180

    Article  ADS  Google Scholar 

  • Seager S, Kuchner M, Hier-Majumder CA, Militzer B (2007) Mass–radius relationships for solid exoplanets. Astrophys J 669:1279–1297

    Article  ADS  Google Scholar 

  • Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. Astron Astrophys 24:337–355

    ADS  Google Scholar 

  • Stamatellos D (2015) The migration of gas giant planets in gravitationally unstable disks. Astrophys J 810:L11

    Article  ADS  Google Scholar 

  • Stevenson DJ (1982) Formation of the giant planets. Planet Space Sci 30:755–764

    Article  ADS  Google Scholar 

  • Toomre A (1964) On the gravitational stability of a disk of stars. Astrophys J 139:1217–1238

    Article  ADS  Google Scholar 

  • Wahl SM, Hubbard WB, Militzer B et al (2017) Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core. Geophys Res Lett 44:4649–4659

    Article  ADS  Google Scholar 

  • Walmswell J, Clarke C, Cossins P (2013) The evolution of planetesimal swarms in self-gravitating protoplanetary discs. Mon Not R Astron Soc 431:1903–1913

    Article  ADS  Google Scholar 

  • Weidenschilling SJ, Davis DR (1985) Orbital resonances in the solar nebula – implications for planetary accretion. Icarus 62:16–29

    Article  ADS  Google Scholar 

  • Weiss A, Hillebrandt W, Thomas HC, Ritter H (2006) Cox and Giuli’s principles of stellar structure. Cambridge Scientific Publishers Ltd, Cambridge, UK

    Google Scholar 

  • Wetherill GW, Stewart GR (1989) Accumulation of a swarm of small planetesimals. Icarus 77:330–357

    Article  ADS  Google Scholar 

  • Wong MH, Mahaffy PR, Atreya SK, Niemann HB, Owen TC (2004) Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter. Icarus 171:153–170

    Article  ADS  Google Scholar 

  • Wuchterl G (1993) The critical mass for protoplanets revisited – massive envelopes through convection. Icarus 106:323–334

    Article  ADS  Google Scholar 

  • Young MD, Clarke CJ (2015) Dependence of fragmentation in self-gravitating accretion discs on small-scale structure. Mon Not R Astron Soc 451:3987–3994

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work benefitted greatly from discussions with Peter Bodenheimer. The authors acknowledge support from NASA’s Research Opportunities in Space and Earth Science (ROSES), and in particular from the Emerging Worlds Program. Resources supporting the work shown in Figs. 1 through 6 were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro D’Angelo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

D’Angelo, G., Lissauer, J.J. (2018). Formation of Giant Planets. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-55333-7_140

Download citation

Publish with us

Policies and ethics