Computer Science > Robotics
[Submitted on 22 Sep 2024]
Title:Contact Compliance Visuo-Proprioceptive Policy for Contact-Rich Manipulation with Cost-Efficient Haptic Hand-Arm Teleoperation System
View PDF HTML (experimental)Abstract:Learning robot manipulation skills in real-world environments is extremely challenging. Robots learning manipulation skills in real-world environments is extremely challenging. Recent research on imitation learning and visuomotor policies has significantly enhanced the ability of robots to perform manipulation tasks. In this paper, we propose Admit Policy, a visuo-proprioceptive imitation learning framework with force compliance, designed to reduce contact force fluctuations during robot execution of contact-rich manipulation tasks. This framework also includes a hand-arm teleoperation system with vibrotactile feedback for efficient data collection. Our framework utilizes RGB images, robot joint positions, and contact forces as observations and leverages a consistency-constrained teacher-student probabilistic diffusion model to generate future trajectories for end-effector positions and contact forces. An admittance model is then employed to track these trajectories, enabling effective force-position control across various this http URL validated our framework on five challenging contact-rich manipulation tasks. Among these tasks, while improving success rates, our approach most significantly reduced the mean contact force required to complete the tasks by up to 53.92% and decreased the standard deviation of contact force fluctuations by 76.51% compared to imitation learning algorithms without dynamic contact force prediction and tracking.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.