Electrical Engineering and Systems Science > Systems and Control
[Submitted on 5 Sep 2024 (v1), last revised 11 Sep 2024 (this version, v2)]
Title:Analytical Optimized Traffic Flow Recovery for Large-scale Urban Transportation Network
View PDF HTML (experimental)Abstract:The implementation of intelligent transportation systems (ITS) has enhanced data collection in urban transportation through advanced traffic sensing devices. However, the high costs associated with installation and maintenance result in sparse traffic data coverage. To obtain complete, accurate, and high-resolution network-wide traffic flow data, this study introduces the Analytical Optimized Recovery (AOR) approach that leverages abundant GPS speed data alongside sparse flow data to estimate traffic flow in large-scale urban networks. The method formulates a constrained optimization framework that utilizes a quadratic objective function with l2 norm regularization terms to address the traffic flow recovery problem effectively and incorporates a Lagrangian relaxation technique to maintain non-negativity constraints. The effectiveness of this approach was validated in a large urban network in Shenzhen's Futian District using the Simulation of Urban MObility (SUMO) platform. Analytical results indicate that the method achieves low estimation errors, affirming its suitability for comprehensive traffic analysis in urban settings with limited sensor deployment.
Submission history
From: Shixiao Liang [view email][v1] Thu, 5 Sep 2024 20:49:35 UTC (17,636 KB)
[v2] Wed, 11 Sep 2024 23:37:25 UTC (17,636 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.