Electrical Engineering and Systems Science > Signal Processing
[Submitted on 24 Aug 2024]
Title:SGP-RI: A Real-Time-Trainable and Decentralized IoT Indoor Localization Model Based on Sparse Gaussian Process with Reduced-Dimensional Inputs
View PDF HTML (experimental)Abstract:Internet of Things (IoT) devices are deployed in the filed, there is an enormous amount of untapped potential in local computing on those IoT devices. Harnessing this potential for indoor localization, therefore, becomes an exciting research area. Conventionally, the training and deployment of indoor localization models are based on centralized servers with substantial computational resources. This centralized approach faces several challenges, including the database's inability to accommodate the dynamic and unpredictable nature of the indoor electromagnetic environment, the model retraining costs, and the susceptibility of centralized servers to security breaches. To mitigate these challenges we aim to amalgamate the offline and online phases of traditional indoor localization methods using a real-time-trainable and decentralized IoT indoor localization model based on Sparse Gaussian Process with Reduced-dimensional Inputs (SGP-RI), where the number and dimension of the input data are reduced through reference point and wireless access point filtering, respectively. The experimental results based on a multi-building and multi-floor static database as well as a single-building and single-floor dynamic database, demonstrate that the proposed SGP-RI model with less than half the training samples as inducing inputs can produce comparable localization performance to the standard Gaussian Process model with the whole training samples. The SGP-RI model enables the decentralization of indoor localization, facilitating its deployment to resource-constrained IoT devices, and thereby could provide enhanced security and privacy, reduced costs, and network dependency. Also, the model's capability of real-time training makes it possible to quickly adapt to the time-varying indoor electromagnetic environment.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.