Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 25 Aug 2024]
Title:Batch-FPM: Random batch-update multi-parameter physical Fourier ptychography neural network
View PDFAbstract:Fourier Ptychographic Microscopy (FPM) is a computational imaging technique that enables high-resolution imaging over a large field of view. However, its application in the biomedical field has been limited due to the long image reconstruction time and poor noise robustness. In this paper, we propose a fast and robust FPM reconstruction method based on physical neural networks with batch update stochastic gradient descent (SGD) optimization strategy, capable of achieving attractive results with low single-to-noise ratio and correcting multiple system parameters simultaneously. Our method leverages a random batch optimization approach, breaks away from the fixed sequential iterative order and gives greater attention to high-frequency information. The proposed method has better convergence performance even for low signal-to-noise ratio data sets, such as low exposure time dark-field images. As a result, it can greatly increase the image recording and result reconstruction speed without any additional hardware modifications. By utilizing advanced deep learning optimizers and perform parallel computational scheme, our method enhances GPU computational efficiency, significantly reducing reconstruction costs. Experimental results demonstrate that our method achieves near real-time digital refocusing of a 1024 x 1024 pixels region of interest on consumer-grade GPUs. This approach significantly improves temporal resolution (by reducing the exposure time of dark-field images), noise resistance, and reconstruction speed, and therefore can efficiently promote the practical application of FPM in clinical diagnostics, digital pathology, and biomedical research, etc. In addition, we believe our algorithm scheme can help researchers quickly validate and implement FPM-related ideas. We invite requests for the full code via email.
Current browse context:
eess.IV
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.