Computer Science > Software Engineering
[Submitted on 8 Aug 2024]
Title:Large Language Models for cross-language code clone detection
View PDF HTML (experimental)Abstract:With the involvement of multiple programming languages in modern software development, cross-lingual code clone detection has gained traction with the software engineering community. Numerous studies have explored this topic, proposing various promising approaches. Inspired by the significant advances in machine learning in recent years, particularly Large Language Models (LLMs), which have demonstrated their ability to tackle various tasks, this paper revisits cross-lingual code clone detection.
We investigate the capabilities of four (04) LLMs and eight (08) prompts for the identification of cross-lingual code clones. Additionally, we evaluate a pre-trained embedding model to assess the effectiveness of the generated representations for classifying clone and non-clone pairs. Both studies (based on LLMs and Embedding models) are evaluated using two widely used cross-lingual datasets, XLCoST and CodeNet. Our results show that LLMs can achieve high F1 scores, up to 0.98, for straightforward programming examples (e.g., from XLCoST). However, they not only perform less well on programs associated with complex programming challenges but also do not necessarily understand the meaning of code clones in a cross-lingual setting. We show that embedding models used to represent code fragments from different programming languages in the same representation space enable the training of a basic classifier that outperforms all LLMs by ~2 and ~24 percentage points on the XLCoST and CodeNet datasets, respectively. This finding suggests that, despite the apparent capabilities of LLMs, embeddings provided by embedding models offer suitable representations to achieve state-of-the-art performance in cross-lingual code clone detection.
Current browse context:
cs.SE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.