Computer Science > Computation and Language
[Submitted on 6 Aug 2024]
Title:Empathy Level Alignment via Reinforcement Learning for Empathetic Response Generation
View PDF HTML (experimental)Abstract:Empathetic response generation, aiming at understanding the user's situation and feelings and respond empathically, is crucial in building human-like dialogue systems. Previous methods mainly focus on using maximum likelihood estimation as the optimization objective for training response generation models, without taking into account the empathy level alignment between generated responses and target responses. To this end, we propose an empathetic response generation using reinforcement learning (EmpRL) framework. The framework designs an effective empathy reward function and generates empathetic responses by maximizing the expected reward through reinforcement learning. Given the powerful text generation capability of pre-trained language models, EmpRL utilizes the pre-trained T5 model as the generator and conducts further training to initialize the policy. To align the empathy level between generated responses and target responses in the context, an empathy reward function containing three empathy communication mechanisms, i.e., emotional reaction, interpretation, and exploration, is constructed using pre-designed and pre-trained empathy identifiers. Finally, the proximal policy optimization algorithm is used to further train the policy to produce empathetic responses. Both automatic and manual evaluations demonstrate that the proposed EmpRL framework can improve the quality of generated responses, enhance the empathy level similarity between generated and target responses, and produce empathetic responses covering both affective and cognitive aspects.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.