Computer Science > Machine Learning
[Submitted on 27 Jul 2024]
Title:CoLiDR: Concept Learning using Aggregated Disentangled Representations
View PDF HTML (experimental)Abstract:Interpretability of Deep Neural Networks using concept-based models offers a promising way to explain model behavior through human-understandable concepts. A parallel line of research focuses on disentangling the data distribution into its underlying generative factors, in turn explaining the data generation process. While both directions have received extensive attention, little work has been done on explaining concepts in terms of generative factors to unify mathematically disentangled representations and human-understandable concepts as an explanation for downstream tasks. In this paper, we propose a novel method CoLiDR - which utilizes a disentangled representation learning setup for learning mutually independent generative factors and subsequently learns to aggregate the said representations into human-understandable concepts using a novel aggregation/decomposition module. Experiments are conducted on datasets with both known and unknown latent generative factors. Our method successfully aggregates disentangled generative factors into concepts while maintaining parity with state-of-the-art concept-based approaches. Quantitative and visual analysis of the learned aggregation procedure demonstrates the advantages of our work compared to commonly used concept-based models over four challenging datasets. Lastly, our work is generalizable to an arbitrary number of concepts and generative factors - making it flexible enough to be suitable for various types of data.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.