Computer Science > Computers and Society
[Submitted on 23 Jul 2024]
Title:Improving the Computational Efficiency of Adaptive Audits of IRV Elections
View PDF HTML (experimental)Abstract:AWAIRE is one of two extant methods for conducting risk-limiting audits of instant-runoff voting (IRV) elections. In principle AWAIRE can audit IRV contests with any number of candidates, but the original implementation incurred memory and computation costs that grew superexponentially with the number of candidates. This paper improves the algorithmic implementation of AWAIRE in three ways that make it practical to audit IRV contests with 55 candidates, compared to the previous 6 candidates. First, rather than trying from the start to rule out all candidate elimination orders that produce a different winner, the algorithm starts by considering only the final round, testing statistically whether each candidate could have won that round. For those candidates who cannot be ruled out at that stage, it expands to consider earlier and earlier rounds until either it provides strong evidence that the reported winner really won or a full hand count is conducted, revealing who really won. Second, it tests a richer collection of conditions, some of which can rule out many elimination orders at once. Third, it exploits relationships among those conditions, allowing it to abandon testing those that are unlikely to help. We provide real-world examples with up to 36 candidates and synthetic examples with up to 55 candidates, showing how audit sample size depends on the margins and on the tuning parameters. An open-source Python implementation is publicly available.
Current browse context:
cs.CY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.