Computer Science > Computers and Society
[Submitted on 21 Apr 2024 (v1), last revised 1 Aug 2024 (this version, v2)]
Title:An AI-Enabled Framework Within Reach for Enhancing Healthcare Sustainability and Fairness
View PDF HTML (experimental)Abstract:Good health and well-being is among key issues in the United Nations 2030 Sustainable Development Goals. The rising prevalence of large-scale infectious diseases and the accelerated aging of the global population are driving the transformation of healthcare technologies. In this context, establishing large-scale public health datasets, developing medical models, and creating decision-making systems with a human-centric approach are of strategic significance. Recently, by leveraging the extraordinary number of accessible cameras, groundbreaking advancements have emerged in AI methods for physiological signal monitoring and disease diagnosis using camera sensors. These approaches, requiring no specialized medical equipment, offer convenient manners of collecting large-scale medical data in response to public health events. Therefore, we outline a prospective framework and heuristic vision for a camera-based public health (CBPH) framework utilizing visual physiological monitoring technology. The CBPH can be considered as a convenient and universal framework for public health, advancing the United Nations Sustainable Development Goals, particularly in promoting the universality, sustainability, and equity of healthcare in low- and middle-income countries or regions. Furthermore, CBPH provides a comprehensive solution for building a large-scale and human-centric medical database, and a multi-task large medical model for public health and medical scientific discoveries. It has a significant potential to revolutionize personal monitoring technologies, digital medicine, telemedicine, and primary health care in public health. Therefore, it can be deemed that the outcomes of this paper will contribute to the establishment of a sustainable and fair framework for public health, which serves as a crucial bridge for advancing scientific discoveries in the realm of AI for medicine (AI4Medicine).
Submission history
From: Bin Huang [view email][v1] Sun, 21 Apr 2024 04:37:24 UTC (11,147 KB)
[v2] Thu, 1 Aug 2024 09:57:28 UTC (7,577 KB)
Current browse context:
cs.CY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.