Computer Science > Computer Vision and Pattern Recognition
[Submitted on 9 Jun 2024 (v1), last revised 2 Sep 2024 (this version, v2)]
Title:Evolution-aware VAriance (EVA) Coreset Selection for Medical Image Classification
View PDF HTML (experimental)Abstract:In the medical field, managing high-dimensional massive medical imaging data and performing reliable medical analysis from it is a critical challenge, especially in resource-limited environments such as remote medical facilities and mobile devices. This necessitates effective dataset compression techniques to reduce storage, transmission, and computational cost. However, existing coreset selection methods are primarily designed for natural image datasets, and exhibit doubtful effectiveness when applied to medical image datasets due to challenges such as intra-class variation and inter-class similarity. In this paper, we propose a novel coreset selection strategy termed as Evolution-aware VAriance (EVA), which captures the evolutionary process of model training through a dual-window approach and reflects the fluctuation of sample importance more precisely through variance measurement. Extensive experiments on medical image datasets demonstrate the effectiveness of our strategy over previous SOTA methods, especially at high compression rates. EVA achieves 98.27% accuracy with only 10% training data, compared to 97.20% for the full training set. None of the compared baseline methods can exceed Random at 5% selection rate, while EVA outperforms Random by 5.61%, showcasing its potential for efficient medical image analysis.
Submission history
From: Yuxin Hong [view email][v1] Sun, 9 Jun 2024 07:22:50 UTC (1,803 KB)
[v2] Mon, 2 Sep 2024 07:32:55 UTC (1,792 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.