Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Jun 2024]
Title:PatchSVD: A Non-uniform SVD-based Image Compression Algorithm
View PDF HTML (experimental)Abstract:Storing data is particularly a challenge when dealing with image data which often involves large file sizes due to the high resolution and complexity of images. Efficient image compression algorithms are crucial to better manage data storage costs. In this paper, we propose a novel region-based lossy image compression technique, called PatchSVD, based on the Singular Value Decomposition (SVD) algorithm. We show through experiments that PatchSVD outperforms SVD-based image compression with respect to three popular image compression metrics. Moreover, we compare PatchSVD compression artifacts with those of Joint Photographic Experts Group (JPEG) and SVD-based image compression and illustrate some cases where PatchSVD compression artifacts are preferable compared to JPEG and SVD artifacts.
Submission history
From: Zahra Golpayegani [view email][v1] Fri, 7 Jun 2024 17:57:40 UTC (13,648 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.