Computer Science > Computer Vision and Pattern Recognition
[Submitted on 5 Jun 2024 (v1), last revised 6 Jun 2024 (this version, v2)]
Title:Inv-Adapter: ID Customization Generation via Image Inversion and Lightweight Adapter
View PDF HTML (experimental)Abstract:The remarkable advancement in text-to-image generation models significantly boosts the research in ID customization generation. However, existing personalization methods cannot simultaneously satisfy high fidelity and high-efficiency requirements. Their main bottleneck lies in the prompt image encoder, which produces weak alignment signals with the text-to-image model and significantly increased model size. Towards this end, we propose a lightweight Inv-Adapter, which first extracts diffusion-domain representations of ID images utilizing a pre-trained text-to-image model via DDIM image inversion, without additional image encoder. Benefiting from the high alignment of the extracted ID prompt features and the intermediate features of the text-to-image model, we then embed them efficiently into the base text-to-image model by carefully designing a lightweight attention adapter. We conduct extensive experiments to assess ID fidelity, generation loyalty, speed, and training parameters, all of which show that the proposed Inv-Adapter is highly competitive in ID customization generation and model scale.
Submission history
From: Peng Xing [view email][v1] Wed, 5 Jun 2024 02:59:08 UTC (37,369 KB)
[v2] Thu, 6 Jun 2024 06:59:46 UTC (29,907 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.