Electrical Engineering and Systems Science > Systems and Control
[Submitted on 4 Jun 2024 (v1), last revised 29 Oct 2024 (this version, v2)]
Title:Adaptive Relaxation based Non-Conservative Chance Constrained Stochastic MPC
View PDFAbstract:Chance constrained stochastic model predictive controllers (CC-SMPC) trade off full constraint satisfaction for economical plant performance under uncertainty. Previous CC-SMPC works are over-conservative in constraint violations leading to worse economic performance. Other past works require a-priori information about the uncertainty set, limiting their application. This paper considers a discrete LTI system with hard constraints on inputs and chance constraints on states, with unknown uncertainty distribution, statistics, or samples. This work proposes a novel adaptive online update rule to relax the state constraints based on the time-average of past constraint violations, to achieve reduced conservativeness in closed-loop. Under an ideal control policy assumption, it is proven that the time-average of constraint violations asymptotically converges to the maximum allowed violation probability. The method is applied for optimal battery energy storage system (BESS) dispatch in a grid connected microgrid with PV generation and load demand, with chance constraints on BESS state-of-charge (SOC). Realistic simulations show the superior electricity cost saving potential of the proposed method as compared to the traditional economic MPC without chance constraints, and a state-of-the-art approach with chance constraints. We satisfy the chance constraints non-conservatively in closed-loop, effectively trading off increased cost savings with minimal adverse effects on BESS lifetime.
Submission history
From: Avik Ghosh [view email][v1] Tue, 4 Jun 2024 05:18:11 UTC (2,394 KB)
[v2] Tue, 29 Oct 2024 05:20:50 UTC (1,297 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.