Computer Science > Cryptography and Security
[Submitted on 19 May 2024]
Title:Biometrics-Based Authenticated Key Exchange with Multi-Factor Fuzzy Extractor
View PDFAbstract:Existing fuzzy extractors and similar methods provide an effective way for extracting a secret key from a user's biometric data, but are susceptible to impersonation attack: once a valid biometric sample is captured, the scheme is no longer secure. We propose a novel multi-factor fuzzy extractor that integrates both a user's secret (e.g., a password) and a user's biometrics in the generation and reconstruction process of a cryptographic key. We then employ this multi-factor fuzzy extractor to construct personal identity credentials which can be used in a new multi-factor authenticated key exchange protocol that possesses multiple important features. First, the protocol provides mutual authentication. Second, the user and service provider can authenticate each other without the involvement of the identity authority. Third, the protocol can prevent user impersonation from a compromised identity authority. Finally, even when both a biometric sample and the secret are captured, the user can re-register to create a new credential using a new secret (reusable/reissued identity credentials). Most existing works on multi-factor authenticated key exchange only have a subset of these features. We formally prove that the proposed protocol is semantically secure. Our experiments carried out on the finger vein dataset SDUMLA achieved a low equal error rate (EER) of 0.04%, a reasonable averaged computation time of 0.93 seconds for the user and service provider to authenticate and establish a shared session key, and a small communication overhead of only 448 bytes.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.