Computer Science > Human-Computer Interaction
[Submitted on 6 May 2024]
Title:Behavioral analysis in immersive learning environments: A systematic literature review and research agenda
View PDF HTML (experimental)Abstract:The rapid growth of immersive technologies in educational areas has increased research interest in analyzing the specific behavioral patterns of learners in immersive learning environments. Considering the fact that research on the technical affordances of immersive technologies and the pedagogical affordances of behavioral analysis remains fragmented, this study first contributes by developing a conceptual framework that amalgamates learning requirements, specification, evaluation, and iteration into an integrated model to identify learning benefits and potential hurdles of behavioral analysis in immersive learning environments. Then, a systematic review was conducted underpinning the proposed conceptual framework to retrieve valuable empirical evidence from the 40 eligible articles during the last decade. The review findings suggest that (1) there is an essential need to sufficiently prepare the salient pedagogical requirements to define the specific learning stage, envisage intended cognitive objectives, and specify an appropriate set of learning activities, when developing comprehensive plans on behavioral analysis in immersive learning environments. (2) Researchers could customize the unique immersive experimental implementation by considering factors from four dimensions: learner, pedagogy, context, and representation. (3) The behavioral patterns constructed in immersive learning environments vary by considering the influence of behavioral analysis techniques, research themes, and immersive technical features. (4) The use of behavioral analysis in immersive learning environments faces several challenges from technical, implementation, and data processing perspectives. This study also articulates critical research agenda that could drive future investigation on behavioral analysis in immersive learning environments.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.