Computer Science > Software Engineering
[Submitted on 3 May 2024 (v1), last revised 15 May 2024 (this version, v2)]
Title:Automatic Programming: Large Language Models and Beyond
View PDF HTML (experimental)Abstract:Automatic programming has seen increasing popularity due to the emergence of tools like GitHub Copilot which rely on Large Language Models (LLMs). At the same time, automatically generated code faces challenges during deployment due to concerns around quality and trust. In this article, we study automated coding in a general sense and study the concerns around code quality, security and related issues of programmer responsibility. These are key issues for organizations while deciding on the usage of automatically generated code. We discuss how advances in software engineering such as program repair and analysis can enable automatic programming. We conclude with a forward looking view, focusing on the programming environment of the near future, where programmers may need to switch to different roles to fully utilize the power of automatic programming. Automated repair of automatically generated programs from LLMs, can help produce higher assurance code from LLMs, along with evidence of assurance
Submission history
From: Shin Hwei Tan [view email][v1] Fri, 3 May 2024 16:19:24 UTC (1,693 KB)
[v2] Wed, 15 May 2024 16:33:57 UTC (1,693 KB)
Current browse context:
cs.SE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.