Computer Science > Computer Vision and Pattern Recognition
[Submitted on 1 May 2024]
Title:Brighteye: Glaucoma Screening with Color Fundus Photographs based on Vision Transformer
View PDF HTML (experimental)Abstract:Differences in image quality, lighting conditions, and patient demographics pose challenges to automated glaucoma detection from color fundus photography. Brighteye, a method based on Vision Transformer, is proposed for glaucoma detection and glaucomatous feature classification. Brighteye learns long-range relationships among pixels within large fundus images using a self-attention mechanism. Prior to being input into Brighteye, the optic disc is localized using YOLOv8, and the region of interest (ROI) around the disc center is cropped to ensure alignment with clinical practice. Optic disc detection improves the sensitivity at 95% specificity from 79.20% to 85.70% for glaucoma detection and the Hamming distance from 0.2470 to 0.1250 for glaucomatous feature classification. In the developmental stage of the Justified Referral in AI Glaucoma Screening (JustRAIGS) challenge, the overall outcome secured the fifth position out of 226 entries.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.