Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 30 Apr 2024]
Title:Deep low-latency joint speech transmission and enhancement over a gaussian channel
View PDFAbstract:Ensuring intelligible speech communication for hearing assistive devices in low-latency scenarios presents significant challenges in terms of speech enhancement, coding and transmission. In this paper, we propose novel solutions for low-latency joint speech transmission and enhancement, leveraging deep neural networks (DNNs). Our approach integrates two state-of-the-art DNN architectures for low-latency speech enhancement and low-latency analog joint source-channel-based transmission, creating a combined low-latency system and jointly training both systems in an end-to-end approach. Due to the computational demands of the enhancement system, this order is suitable when high computational power is unavailable in the decoder, like hearing assistive devices. The proposed system enables the configuration of total latency, achieving high performance even at latencies as low as 3 ms, which is typically challenging to attain. The simulation results provide compelling evidence that a joint enhancement and transmission system is superior to a simple concatenation system in diverse settings, encompassing various wireless channel conditions, latencies, and background noise scenarios.
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.