Computer Science > Artificial Intelligence
[Submitted on 26 Apr 2024]
Title:Consolidating LAMA with Best-First Width Search
View PDF HTML (experimental)Abstract:One key decision for heuristic search algorithms is how to balance exploration and exploitation. In classical planning, novelty search has come out as the most successful approach in this respect. The idea is to favor states that contain previously unseen facts when searching for a plan. This is done by maintaining a record of the tuples of facts observed in previous states. Then the novelty of a state is the size of the smallest previously unseen tuple. The most successful version of novelty search is best-first width search (BFWS), which combines novelty measures with heuristic estimates. An orthogonal approach to balance exploration-exploitation is to use several open-lists. These open-lists are ordered using different heuristic estimates, which diversify the information used in the search. The search algorithm then alternates between these open-lists, trying to exploit these different estimates. This is the approach used by LAMA, a classical planner that, a decade after its release, is still considered state-of-the-art in agile planning. In this paper, we study how to combine LAMA and BFWS. We show that simply adding the strongest open-list used in BFWS to LAMA harms performance. However, we show that combining only parts of each planner leads to a new state-of-the-art agile planner.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.