Mathematics > Numerical Analysis
[Submitted on 14 Apr 2024]
Title:Multivariate confluent Vandermonde with G-Arnoldi and applications
View PDF HTML (experimental)Abstract:In the least-squares fitting framework, the Vandermonde with Arnoldi (V+A) method presented in [Brubeck, Nakatsukasa, and Trefethen, SIAM Review, 63 (2021), pp. 405-415] is an effective approach to compute a polynomial that approximates an underlying univariate function f. Extensions of V+A include its multivariate version and the univariate confluent V+A; the latter enables us to use the information of the derivative of f in obtaining the approximation polynomial. In this paper, we shall extend V+A further to the multivariate confluent V+A. Besides the technical generalization of the univariate confluent V+A, we also introduce a general and application-dependent G-orthogonalization in the Arnoldi process. We shall demonstrate with several applications that, by specifying an application-related G-inner product, the desired approximate multivariate polynomial as well as its certain partial derivatives can be computed accurately from a well-conditioned least-squares problem whose coefficient matrix is orthonormal. The desired multivariate polynomial is represented in a discrete G-orthogonal polynomials basis which admits an explicit recurrence, and therefore, facilitates evaluating function values and certain partial derivatives at new nodes efficiently. We demonstrate its flexibility by applying it to solve the multivariate Hermite least-squares problem and PDEs with various boundary conditions in irregular domains.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.