Computer Science > Machine Learning
[Submitted on 6 Apr 2024 (v1), last revised 19 May 2024 (this version, v2)]
Title:Impact of Fairness Regulations on Institutions' Policies and Population Qualifications
View PDFAbstract:The proliferation of algorithmic systems has fueled discussions surrounding the regulation and control of their social impact. Herein, we consider a system whose primary objective is to maximize utility by selecting the most qualified individuals. To promote demographic parity in the selection algorithm, we consider penalizing discrimination across social groups. We examine conditions under which a discrimination penalty can effectively reduce disparity in the selection. Additionally, we explore the implications of such a penalty when individual qualifications may evolve over time in response to the imposed penalizing policy. We identify scenarios where the penalty could hinder the natural attainment of equity within the population. Moreover, we propose certain conditions that can counteract this undesirable outcome, thus ensuring fairness.
Submission history
From: Hamidreza Montaseri [view email][v1] Sat, 6 Apr 2024 07:21:41 UTC (28 KB)
[v2] Sun, 19 May 2024 11:40:42 UTC (183 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.