Computer Science > Data Structures and Algorithms
[Submitted on 4 Apr 2024 (v1), last revised 12 Jun 2024 (this version, v2)]
Title:Additive approximation algorithm for geodesic centers in $δ$-hyperbolic graphs
View PDF HTML (experimental)Abstract:For an integer $k\geq 1$, the objective of \textsc{$k$-Geodesic Center} is to find a set $\mathcal{C}$ of $k$ isometric paths such that the maximum distance between any vertex $v$ and $\mathcal{C}$ is minimised. Introduced by Gromov, \emph{$\delta$-hyperbolicity} measures how treelike a graph is from a metric point of view. Our main contribution in this paper is to provide an additive $O(\delta)$-approximation algorithm for \textsc{$k$-Geodesic Center} on $\delta$-hyperbolic graphs. On the way, we define a coarse version of the pairing property introduced by Gerstel \& Zaks (Networks, 1994) and show it holds for $\delta$-hyperbolic graphs. This result allows to reduce the \textsc{$k$-Geodesic Center} problem to its rooted counterpart, a main idea behind our algorithm. We also adapt a technique of Dragan \& Leitert, (TCS, 2017) to show that for every $k\geq 1$, $k$-\textsc{Geodesic Center} is NP-hard even on partial grids.
Submission history
From: Dibyayan Chakraborty [view email][v1] Thu, 4 Apr 2024 21:32:34 UTC (212 KB)
[v2] Wed, 12 Jun 2024 14:20:40 UTC (203 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.