Computer Science > Computation and Language
[Submitted on 23 Mar 2024]
Title:Modeling Unified Semantic Discourse Structure for High-quality Headline Generation
View PDF HTML (experimental)Abstract:Headline generation aims to summarize a long document with a short, catchy title that reflects the main idea. This requires accurately capturing the core document semantics, which is challenging due to the lengthy and background information-rich na ture of the texts. In this work, We propose using a unified semantic discourse structure (S3) to represent document semantics, achieved by combining document-level rhetorical structure theory (RST) trees with sentence-level abstract meaning representation (AMR) graphs to construct S3 graphs. The hierarchical composition of sentence, clause, and word intrinsically characterizes the semantic meaning of the overall document. We then develop a headline generation framework, in which the S3 graphs are encoded as contextual features. To consolidate the efficacy of S3 graphs, we further devise a hierarchical structure pruning mechanism to dynamically screen the redundant and nonessential nodes within the graph. Experimental results on two headline generation datasets demonstrate that our method outperforms existing state-of-art methods consistently. Our work can be instructive for a broad range of document modeling tasks, more than headline or summarization generation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.