Computer Science > Machine Learning
[Submitted on 20 Mar 2024 (v1), last revised 18 Oct 2024 (this version, v6)]
Title:The Model Openness Framework: Promoting Completeness and Openness for Reproducibility, Transparency, and Usability in Artificial Intelligence
View PDF HTML (experimental)Abstract:Generative artificial intelligence (AI) offers numerous opportunities for research and innovation, but its commercialization has raised concerns about the transparency and safety of frontier AI models. Most models lack the necessary components for full understanding, auditing, and reproducibility, and some model producers use restrictive licenses whilst claiming that their models are "open source". To address these concerns, we introduce the Model Openness Framework (MOF), a three-tiered ranked classification system that rates machine learning models based on their completeness and openness, following open science principles. For each MOF class, we specify code, data, and documentation components of the model development lifecycle that must be released and under which open licenses. In addition, the Model Openness Tool (MOT) provides a user-friendly reference implementation to evaluate the openness and completeness of models against the MOF classification system. Together, the MOF and MOT provide timely practical guidance for (i) model producers to enhance the openness and completeness of their publicly-released models, and (ii) model consumers to identify open models and their constituent components that can be permissively used, studied, modified, and redistributed. Through the MOF, we seek to establish completeness and openness as core tenets of responsible AI research and development, and to promote best practices in the burgeoning open AI ecosystem.
Submission history
From: Cailean Osborne [view email][v1] Wed, 20 Mar 2024 17:47:08 UTC (342 KB)
[v2] Thu, 21 Mar 2024 18:03:46 UTC (342 KB)
[v3] Mon, 3 Jun 2024 16:44:31 UTC (56 KB)
[v4] Wed, 14 Aug 2024 22:47:01 UTC (1,050 KB)
[v5] Wed, 2 Oct 2024 19:16:19 UTC (1,046 KB)
[v6] Fri, 18 Oct 2024 08:20:22 UTC (1,464 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.