Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Mar 2024]
Title:Intelligent Railroad Grade Crossing: Leveraging Semantic Segmentation and Object Detection for Enhanced Safety
View PDFAbstract:Crashes and delays at Railroad Highway Grade Crossings (RHGC), where highways and railroads intersect, pose significant safety concerns for the U.S. Federal Railroad Administration (FRA). Despite the critical importance of addressing accidents and traffic delays at highway-railroad intersections, there is a notable dearth of research on practical solutions for managing these issues. In response to this gap in the literature, our study introduces an intelligent system that leverages machine learning and computer vision techniques to enhance safety at Railroad Highway Grade crossings (RHGC). This research proposed a Non-Maximum Suppression (NMS)- based ensemble model that integrates a variety of YOLO variants, specifically YOLOv5S, YOLOv5M, and YOLOv5L, for grade-crossing object detection, utilizes segmentation techniques from the UNet architecture for detecting approaching rail at a grade crossing. Both methods are implemented on a Raspberry Pi. Moreover, the strategy employs high-definition cameras installed at the RHGC. This framework enables the system to monitor objects within the Region of Interest (ROI) at crossings, detect the approach of trains, and clear the crossing area before a train arrives. Regarding accuracy, precision, recall, and Intersection over Union (IoU), the proposed state-of-the-art NMS-based object detection ensemble model achieved 96% precision. In addition, the UNet segmentation model obtained a 98% IoU value. This automated railroad grade crossing system powered by artificial intelligence represents a promising solution for enhancing safety at highway-railroad intersections.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.