Mathematics > Numerical Analysis
[Submitted on 29 Feb 2024 (v1), last revised 21 Mar 2024 (this version, v2)]
Title:Recovering the Polytropic Exponent in the Porous Medium Equation: Asymptotic Approach
View PDF HTML (experimental)Abstract:In this paper we consider the time dependent Porous Medium Equation, $u_t = \Delta u^\gamma$ with real polytropic exponent $\gamma>1$, subject to a homogeneous Dirichlet boundary condition. We are interested in recovering $\gamma$ from the knowledge of the solution $u$ at a given large time $T$. Based on an asymptotic inequality satisfied by the solution $u(T)$, we propose a numerical algorithm allowing us to recover $\gamma$. An upper bound for the error between the exact and recovered $\gamma$ is then showed. Finally, numerical investigations are carried out in two dimensions.
Submission history
From: Toni Sayah [view email][v1] Thu, 29 Feb 2024 11:33:11 UTC (64 KB)
[v2] Thu, 21 Mar 2024 07:44:35 UTC (64 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.