Computer Science > Cryptography and Security
[Submitted on 26 Feb 2024]
Title:Investigating Deep Watermark Security: An Adversarial Transferability Perspective
View PDF HTML (experimental)Abstract:The rise of generative neural networks has triggered an increased demand for intellectual property (IP) protection in generated content. Deep watermarking techniques, recognized for their flexibility in IP protection, have garnered significant attention. However, the surge in adversarial transferable attacks poses unprecedented challenges to the security of deep watermarking techniques-an area currently lacking systematic investigation. This study fills this gap by introducing two effective transferable attackers to assess the vulnerability of deep watermarks against erasure and tampering risks. Specifically, we initially define the concept of local sample density, utilizing it to deduce theorems on the consistency of model outputs. Upon discovering that perturbing samples towards high sample density regions (HSDR) of the target class enhances targeted adversarial transferability, we propose the Easy Sample Selection (ESS) mechanism and the Easy Sample Matching Attack (ESMA) method. Additionally, we propose the Bottleneck Enhanced Mixup (BEM) that integrates information bottleneck theory to reduce the generator's dependence on irrelevant noise. Experiments show a significant enhancement in the success rate of targeted transfer attacks for both ESMA and BEM-ESMA methods. We further conduct a comprehensive evaluation using ESMA and BEM-ESMA as measurements, considering model architecture and watermark encoding length, and achieve some impressive findings.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.