Computer Science > Computation and Language
[Submitted on 15 Feb 2024]
Title:PAL: Proxy-Guided Black-Box Attack on Large Language Models
View PDF HTML (experimental)Abstract:Large Language Models (LLMs) have surged in popularity in recent months, but they have demonstrated concerning capabilities to generate harmful content when manipulated. While techniques like safety fine-tuning aim to minimize harmful use, recent works have shown that LLMs remain vulnerable to attacks that elicit toxic responses. In this work, we introduce the Proxy-Guided Attack on LLMs (PAL), the first optimization-based attack on LLMs in a black-box query-only setting. In particular, it relies on a surrogate model to guide the optimization and a sophisticated loss designed for real-world LLM APIs. Our attack achieves 84% attack success rate (ASR) on GPT-3.5-Turbo and 48% on Llama-2-7B, compared to 4% for the current state of the art. We also propose GCG++, an improvement to the GCG attack that reaches 94% ASR on white-box Llama-2-7B, and the Random-Search Attack on LLMs (RAL), a strong but simple baseline for query-based attacks. We believe the techniques proposed in this work will enable more comprehensive safety testing of LLMs and, in the long term, the development of better security guardrails. The code can be found at this https URL.
Submission history
From: Chawin Sitawarin [view email][v1] Thu, 15 Feb 2024 02:54:49 UTC (2,560 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.