Computer Science > Machine Learning
[Submitted on 6 Feb 2024]
Title:Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach
View PDFAbstract:With the arrival of the big data era, mobility profiling has become a viable method of utilizing enormous amounts of mobility data to create an intelligent transportation system. Mobility profiling can extract potential patterns in urban traffic from mobility data and is critical for a variety of traffic-related applications. However, due to the high level of complexity and the huge amount of data, mobility profiling faces huge challenges. Digital Twin (DT) technology paves the way for cost-effective and performance-optimised management by digitally creating a virtual representation of the network to simulate its behaviour. In order to capture the complex spatio-temporal features in traffic scenario, we construct alignment diagrams to assist in completing the spatio-temporal correlation representation and design dilated alignment convolution network (DACN) to learn the fine-grained correlations, i.e., spatio-temporal interactions. We propose a digital twin mobility profiling (DTMP) framework to learn node profiles on a mobility network DT model. Extensive experiments have been conducted upon three real-world datasets. Experimental results demonstrate the effectiveness of DTMP.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.