Computer Science > Computer Vision and Pattern Recognition
[Submitted on 31 Jan 2024]
Title:Source-free Domain Adaptive Object Detection in Remote Sensing Images
View PDFAbstract:Recent studies have used unsupervised domain adaptive object detection (UDAOD) methods to bridge the domain gap in remote sensing (RS) images. However, UDAOD methods typically assume that the source domain data can be accessed during the domain adaptation process. This setting is often impractical in the real world due to RS data privacy and transmission difficulty. To address this challenge, we propose a practical source-free object detection (SFOD) setting for RS images, which aims to perform target domain adaptation using only the source pre-trained model. We propose a new SFOD method for RS images consisting of two parts: perturbed domain generation and alignment. The proposed multilevel perturbation constructs the perturbed domain in a simple yet efficient form by perturbing the domain-variant features at the image level and feature level according to the color and style bias. The proposed multilevel alignment calculates feature and label consistency between the perturbed domain and the target domain across the teacher-student network, and introduces the distillation of feature prototype to mitigate the noise of pseudo-labels. By requiring the detector to be consistent in the perturbed domain and the target domain, the detector is forced to focus on domaininvariant features. Extensive results of three synthetic-to-real experiments and three cross-sensor experiments have validated the effectiveness of our method which does not require access to source domain RS images. Furthermore, experiments on computer vision datasets show that our method can be extended to other fields as well. Our code will be available at: this https URL .
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.