Computer Science > Machine Learning
[Submitted on 30 Jan 2024 (v1), last revised 22 Aug 2024 (this version, v5)]
Title:etuner: A Redundancy-Aware Framework for Efficient Continual Learning Application on Edge Devices
View PDF HTML (experimental)Abstract:Many emerging applications, such as robot-assisted eldercare and object recognition, generally employ deep learning neural networks (DNNs) and require the deployment of DNN models on edge devices. These applications naturally require i) handling streaming-in inference requests and ii) fine-tuning the deployed models to adapt to possible deployment scenario changes. Continual learning (CL) is widely adopted to satisfy these needs. CL is a popular deep learning paradigm that handles both continuous model fine-tuning and overtime inference requests. However, an inappropriate model fine-tuning scheme could involve significant redundancy and consume considerable time and energy, making it challenging to apply CL on edge devices. In this paper, we propose ETuner, an efficient edge continual learning framework that optimizes inference accuracy, fine-tuning execution time, and energy efficiency through both inter-tuning and intra-tuning optimizations. Experimental results show that, on average, ETuner reduces overall fine-tuning execution time by 64%, energy consumption by 56%, and improves average inference accuracy by 1.75% over the immediate model fine-tuning approach.
Submission history
From: Sheng Li [view email][v1] Tue, 30 Jan 2024 02:41:05 UTC (2,852 KB)
[v2] Sat, 16 Mar 2024 03:55:50 UTC (2,823 KB)
[v3] Sat, 10 Aug 2024 03:28:13 UTC (2,904 KB)
[v4] Tue, 13 Aug 2024 07:12:16 UTC (2,904 KB)
[v5] Thu, 22 Aug 2024 19:46:37 UTC (2,904 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.